Background Cover crops can be used as a habitat management strategy to enhance the natural enemies and their temporal synchronization with a target pest. We examined the effect of winter oat intercropping within organic plum orchards on the natural enemy abundance and seasonal dynamics on the biological control of plum aphids in spring in Central Chile. Methods We compared the incidence and abundance of natural enemies and aphid pests from winter to the end of spring using two treatments: (1) plum trees with an oat cover crop (OCC) and (2) plum trees without a cover crop but with spontaneous vegetation (SV). We hypothesized that cover crops allow the development of winter cereal aphids, promoting the early arrival of natural enemies in spring, resulting in an earlier control of plum aphids. Results Winter cereal aphids developed well on the OCC, and as a result, a lower plum aphid incidence in spring was observed when compared to the SV. However, the abundance of natural enemies and the parasitism rates cannot explain the positive impacts of the oat cover crop on the aphid populations as there were no differences between treatments. A potential effect of the oat due to chemical and/or physical stimuli (bottom-up effects) could help to explain these results.
By increasing plant diversity in agroecosystems, it has been proposed that one can enhance and stabilize ecosystem functioning by increasing natural enemies’ diversity. Food web structure determines ecosystem functioning as species at different trophic levels are linked in interacting networks. We compared the food web structure and composition of the aphid– parasitoid and aphid-hyperparasitoid networks in two differentially managed plum orchards: plums with inter-rows of oats as a cover crop (OCC) and plums with inter-rows of spontaneous vegetation (SV). We hypothesized that food web composition and structure vary between OCC and SV, with network specialization being higher in OCC and a more complex food web composition in SV treatment. We found a more complex food web composition with a higher species richness in SV compared to OCC. Quantitative food web metrics differed significantly among treatments showing a higher generality, vulnerability, interaction evenness, and linkage density in SV, while OCC presented a higher degree of specialization. Our results suggest that plant diversification can greatly influence the food web structure and composition, with bottom-up effects induced by plant and aphid hosts that might benefit parasitoids and provide a better understanding of the activity, abundance, and interactions between aphids, parasitoids, and hyperparasitoids in plum orchards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.