This paper proposes a new method named composite multiscale fluctuation dispersion entropy (CMFDE), which measures the complexity of time series under different scale factors and synthesizes the information of multiple coarse-grained sequences. A simulation validates that CMFDE could improve the stability of entropy estimation. Meanwhile, a fault recognition method for rolling bearings based on CMFDE, the minimum redundancy maximum relevancy (mRMR) method, and the k nearest neighbor (kNN) classifier (CMFDE-mRMR-kNN) is developed. For the CMFDE-mRMR-kNN method, the CMFDE method is introduced to extract the fault characteristics of the rolling bearings. Then, the sensitive features are obtained by utilizing the mRMR method. Finally, the kNN classifier is used to recognize the different conditions of the rolling bearings. The effectiveness of the proposed CMFDE-mRMR-kNN method is verified by analyzing the standard experimental dataset. The experimental results show that the proposed fault diagnosis method can effectively classify the conditions of rolling bearings.
In this paper, composite multiscale weighted permutation entropy (CMWPE) is proposed to evaluate the complexity of nonlinear time series, and the advantage of the CMWPE method is verified through analyzing the simulated signal. Meanwhile, considering the complex nonlinear dynamic characteristics of fault rolling bearing signal, a rolling bearing fault diagnosis approach based on CMWPE, joint mutual information (JMI) feature selection, and k-nearest-neighbor (KNN) classifier (CMWPE-JMI-KNN) is proposed. For CMWPE-JMI-KNN, CMWPE is utilized to extract the fault rolling bearing features, JMI is applied for sensitive features selection, and KNN classifier is employed for identifying different rolling bearing conditions. Finally, the proposed CMWPE-JMI-KNN approach is used to analyze the experimental dataset, the analysis results indicate the proposed approach could effectively identify different fault rolling bearing conditions.
In the fault monitoring of rolling bearings, there is always loud noise, leading to poor signal stationariness. How to accurately and efficiently identify the fault type of rolling bearings is a challenge. Based on multivariate multiscale sample entropy (mvMSE), this paper introduces the refined composite mvMSE (RCmvMSE) into the fault extraction of the rolling bearing. A rolling bearing fault-diagnosis method based on stacked auto encoder and RCmvMSE (SDAE-RCmvMSE) is proposed. In the actual environment, the fault-diagnosis method use the multichannel vibration signals of the bearing as the input of stacked denoising autoencoders (SDAEs) to filter the noise of the vibration signals. The features of denoise signals are extracted by RCmvMSE and the rolling bearing operation-state diagnosis is completed with a support-vector machine (SVM) model. The results show that in the original test data, the accuracy rates of SDAE-RCmvMSE, RCmvMSE, and commonplace features of vibration signals combined with SVM (CFVS-SVM) methods are 99.5%, 100%, and 96% respectively. In the data with noise, the accuracy rates of RCmvMSE and CFVS-SVM are 97.75% and 93.08%, respectively, but the accuracy of SDAE-RCmvMSE is still 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.