Swarming micro/nanomotors can self-organize into cohesive groups to execute cooperative tasks. To date, research work has focused on the construction of egalitarian microswarms composed of similar individuals. The construction and collective behaviors of hierarchical leaderfollower-like microswarms are demonstrated. By inducing converging electrohydrodynamic flows under an AC electric field, dielectric microparticles with different sizes and dielectric properties can hierarchically self-organize into leader-follower-like microswarms under attractive electrohydrodynamic interactions, and show novel emergent collective behaviors. First, different from immobile single constituents or egalitarian clusters, the hierarchical microswarms autonomously move with tunable speed. Second, they exhibit multimode collective photoresponses emerging from different behaviors of the constituents in response to light signals. With a vertical UV signal, the photoresponsive followers tend to surround the leader and stop the microswarm. In response to sidewise UV signals, the constituents with stronger phototaxis would migrate to the position away from light stimuli, and thus the microswarms reorient parallel/antiparallel to the light direction and perform collective positive/negative phototaxis. Due to differential roles and huge design spaces of constituents, the hierarchical microswarms are envisioned to possess merits of high-efficiency, multiresponsiveness, and multifunctions, and may serve as intelligent micro/nanorobot systems for biomedicine and microengineering.
The key principle of designing a micro/nanomotor is to introduce asymmetry to a micro/nanoparticle. However, micro/nanomotors designed based on external asymmetry and inherent chemical and geometrical asymmetry usually suffer from tedious small-scale preparation, high cost, and/ or complexity of external power and control devices, making them face insurmountable hurdles in practical applications. Herein, considering the possible distinct properties of different polymorphs, we propose a novel design strategy of simple-structured micromotors by introducing inherent asymmetry in crystalline phases. The inherent phase asymmetry can be easily introduced in spherical TiO 2 particles by adjusting the calcination temperature to control the phase transition and growth of primary grains. The as-designed anatase/rutile TiO 2 micromotors not only show efficient autonomous motions controlled by light in liquid media stemming from the asymmetric surface photocatalytic redox reactions but also have a promising application in environmental remediation due to their high photocatalytic activity in "on-the-fly" degradation of organic pollutants, facile large-scale fabrication, and low cost. The proposed design strategy may pave the way for the large-scale productions and applications of micro/nanomotors.
We developed a facile ultrasonic vibration route is developed to synthesize BMGs and metallic glass-glass composites.
The present paper introduces micro ultrasonic powder molding (micro-UPM), a novel method for forming micro semi-crystalline polymer parts. In the proposed method, semi-crystalline polymer powder is rapidly heated and plasticized by ultrasonic vibration, after which the microcavity is filled with the melt under sonotrode pressure (PU) to form a variety of micro polymer parts. Differential scanning calorimetry, scanning electron microscopy, and nanoindentation tests demonstrate that micro-UPM UHMWPE (ultra-high molecular weight polyethylene) parts consists of nascent and melt-recrystallized phases and that energy concentrated at particle interfaces as a result of high-frequency friction, compressive deformation, and ultrasonic radiation leads to rapid diffusion and interpenetration of the chain segment. The particle interface melts result in strong co-crystallization during cooling. To investigate the effect of ultrasonic duration time (TU) on the quality of micro-UPM UHMWPE parts, different TU values are utilized to form UHMWPE parts at a PU of 16 MPa and a holding time of 5.0 s. As TU increases, the number and sizes of interparticle voids gradually decrease. A rise in the melting peak of the melt-recrystallized phase and a drop in the melting peak of the nascent phrase as well as crystallinity are further observed. When TU is only 1.5 s, the crystallinity of the micro plastic part reaches a minimum value of 54.3% and the melt-recrystallized phase fraction reaches a maximum value of 98.3%. Powder particle interfaces almost disappear in this case, and optimum quality of the micro-UPM UHMWPE part is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.