In the field of AGV, a path planning algorithm is always a heated area. However, traditional path planning algorithms have many disadvantages. To solve these problems, this paper proposes a fusion algorithm that combines the kinematical constraint A* algorithm and the following dynamic window approach algorithm. The kinematical constraint A* algorithm can plan the global path. Firstly, the node optimization can reduce the number of child nodes. Secondly, improving the heuristic function can increase efficiency of path planning. Thirdly, the secondary redundancy can reduce the number of redundant nodes. Finally, the B spline curve can make the global path conform to the dynamic characteristics of AGV. The following DWA algorithm can be dynamic path planning and allow the AGV to avoidance moving obstacle. The optimization heuristic function of the local path is closer to the global optimal path. The simulation results show that, compared with the fusion algorithm of traditional A* algorithm and traditional DWA algorithm, the fusion algorithm reduces the length of path by 3.6%, time of path by 6.7% and the number of turns of final path by 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.