Recent studies have found cloud environments increasingly appealing for executing HPC applications, including tightly coupled parallel simulations. While public clouds offer elastic, on-demand resource provisioning and pay-as-you-go pricing, individual users setting up their on-demand virtual clusters may not be able to take full advantage of common cost-saving opportunities, such as reserved instances.In this paper, we propose a Semi-Elastic Cluster (SEC) computing model for organizations to reserve and dynamically resize a virtual cloud-based cluster. We present a set of integrated batch scheduling plus resource scaling strategies uniquely enabled by SEC, as well as an online reserved instance provisioning algorithm based on job history. Our trace-driven simulation results show that such a model has a 61.0% cost saving than individual users acquiring and managing cloud resources without causing longer average job wait time. Meanwhile, the overhead of acquiring/maintaining shared cloud instances is shown to take only a few seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.