Dipolarization fronts (DFs) are believed to play important roles in transferring plasmas, magnetic fluxes, and energies in the magnetotail. Using the Cluster observations in 2003, electromagnetic energy conversion at the DFs is investigated by case and statistical studies. The case study indicates strongest energy conversion at the DF. The statistical study shows the similar features that the energy of the fields can be significantly transferred to the plasmas (load, J · E > 0) at the DFs. These results are consistent with some recent simulations. Examining the electromagnetic fluctuations at the DFs, we suggest that the wave activities around the lower hybrid frequency may play an important role in the energy dissipation.
We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 i (~30 e) in the circular cross-section perpendicular to its axis, where i and e are respectively the proton and electron gyroradius. There are no clear enhancement seen in high energy electron fluxes, but an enhancement in the perpendicular electron fluxes at~90°pitch angles inside the magnetic hole is seen, implying that the electron are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section (in the M-N plane). These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.
Utilizing the data from the magnetometer instrument which is a part of the Electric and Magnetic Field Instrument Suite and Integrated Science instrument suite on board the Van Allen Probe A from September 2012 to April 2014, when the apogee of the satellite has passed all the magnetic local time (MLT) sectors, we obtain the statistical distribution characteristics of electromagnetic ion cyclotron (EMIC) waves in the inner magnetosphere over all magnetic local times from L = 3 to L = 6. Compared with the previous statistical results about EMIC waves, the occurrence rates of EMIC waves distribute relatively uniform in the MLT sectors in lower L shells. On the other hand, in higher L shells, there are indeed some peaks of the occurrence rate for the EMIC waves, especially in the noon, dusk, and night sectors. EMIC waves appear at lower L shells in the dawn sector than in other sectors. In the lower L shells (L < 4), the occurrence rates of EMIC waves are significant in the dawn sector. This phenomenon may result from the distribution characteristics of the plasmasphere. The location of the plasmapause is usually lower in the dawn sector than that in other sectors, and the plasmapause is considered to be the favored region for the generation of EMIC waves. In higher L shells (L > 4) the occurrence rates of EMIC waves are most significant in the dusk sector, implying the important role of the plasmapause or plasmaspheric plume in generating EMIC waves. We have also investigated the distribution characteristics of the hydrogen band and the helium band EMIC waves. Surprisingly, in the inner magnetosphere, the hydrogen band EMIC waves occur more frequently than the helium band EMIC waves. Both of them have peaks of occurrence rate in noon, dusk, and night sectors, and the hydrogen band EMIC waves have more obvious peaks than the helium band EMIC waves in the night sector, while the helium band EMIC waves are more concentrated than the hydrogen band EMIC waves in the dusk sector. Both of them occur significantly in the noon sector, which implies the important role of the solar wind dynamic pressure.
Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band electromagnetic ion cyclotron (EMIC) waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and two events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2–5 and magnetic local time = 03–13, 19–20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC waves in O+ band.
Kinetic‐size magnetic holes (KSMHs) in the turbulent magnetosheath are statistically investigated using high time resolution data from the Magnetospheric Multiscale mission. The KSMHs with short duration (i.e., <0.5 s) have their cross section smaller than the ion gyroradius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature significantly increases (resp. decrease) the electron perpendicular (resp. parallel) temperature and an electron vortex inside KSMHs. Electron fluxes at ~90° pitch angles with selective energies increase in the KSMHs are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2‐D and 3‐D particle‐in‐cell simulations, indicating that the observed KSMHs seem to be best explained as electron vortex magnetic holes. It is furthermore shown that KSMHs are likely to heat and accelerate the electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.