In the maritime scene, visible light sensors installed on ships have difficulty accurately detecting the sea–sky line (SSL) and its nearby ships due to complex environments and six-degrees-of-freedom movement. Aimed at this problem, this paper combines the camera and inertial sensor data, and proposes a novel maritime target detection algorithm based on camera motion attitude. The algorithm mainly includes three steps, namely, SSL estimation, SSL detection, and target saliency detection. Firstly, we constructed the camera motion attitude model by analyzing the camera's six-degrees-of-freedom motion at sea, estimated the candidate region (CR) of the SSL, then applied the improved edge detection algorithm and the straight-line fitting algorithm to extract the optimal SSL in the CR. Finally, in the region of ship detection (ROSD), an improved visual saliency detection algorithm was applied to extract the target ships. In the experiment, we constructed SSL and its nearby ship detection dataset that matches the camera’s motion attitude data by real ship shooting, and verified the effectiveness of each model in the algorithm through comparative experiments. Experimental results show that compared with the other maritime target detection algorithm, the proposed algorithm achieves a higher detection accuracy in the detection of the SSL and its nearby ships, and provides reliable technical support for the visual development of unmanned ships.
During the detection of maritime targets, the jitter of the shipborne camera usually causes the video instability and the false or missed detection of targets. Aimed at tackling this problem, a novel algorithm for maritime target detection based on the electronic image stabilization technology is proposed in this study. The algorithm mainly includes three models, namely the points line model (PLM), the points classification model (PCM), and the image classification model (ICM). The feature points (FPs) are firstly classified by the PLM, and stable videos as well as target contours are obtained by the PCM. Then the smallest bounding rectangles of the target contours generated as the candidate bounding boxes (bboxes) are sent to the ICM for classification. In the experiments, the ICM, which is constructed based on the convolutional neural network (CNN), is trained and its effectiveness is verified. Our experimental results demonstrate that the proposed algorithm outperformed the benchmark models in all the common metrics including the mean square error (MSE), peak signal to noise ratio (PSNR), structural similarity index (SSIM), and mean average precision (mAP) by at least −47.87%, 8.66%, 6.94%, and 5.75%, respectively. The proposed algorithm is superior to the state-of-the-art techniques in both the image stabilization and target ship detection, which provides reliable technical support for the visual development of unmanned ships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.