The effect of Mn on the microstructure and mechanical properties of as-extruded Mg-0.5Sr alloy were discussed in this work. The results showed that high Mn alloying (2 wt.%) could significantly improve the mechanical properties of the alloys, namely, the tensile and compressive yield strength. The grain size of as-extruded Mg-0.5Sr alloys significantly was refined from 2.78 μm to 1.15 μm due to the pinning effect by fine α-Mn precipitates during the extrusion. Moreover we showed that the tensile yield strength and the compressive yield strength of Mg-0.5Sr-2Mn alloy were 32 and 40 percent age higher than those of Mg-0.5Sr alloy, respectively. Moreover, the strain hardening behaviors of the Mg-0.5Sr-2Mn alloy were discussed, which proved that a large number of small grains and texture have an important role in improving mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.