A modified method for better superpixel generation based on simple linear iterative clustering (SLIC) is presented and named BSLIC in this paper. By initializing cluster centers in hexagon distribution and performing k-means clustering in a limited region, the generated superpixels are shaped into regular and compact hexagons. The additional cluster centers are initialized as edge pixels to improve boundary adherence, which is further promoted by incorporating the boundary term into the distance calculation of the k-means clustering. Berkeley Segmentation Dataset BSDS500 is used to qualitatively and quantitatively evaluate the proposed BSLIC method. Experimental results show that BSLIC achieves an excellent compromise between boundary adherence and regularity of size and shape. In comparison with SLIC, the boundary adherence of BSLIC is increased by at most 12.43% for boundary recall and 3.51% for under segmentation error.
Good learning image priors from the noise-corrupted images or clean natural images are very important in preserving the local edge and texture regions while denoising images. This paper presents a novel image denoising algorithm based on superpixel clustering and sparse representation, named as the superpixel clustering and sparse representation (SC-SR) algorithm. In contrast to most existing methods, the proposed algorithm further learns image nonlocal self-similarity (NSS) prior with mid-level visual cues via superpixel clustering by the sparse subspace clustering method. As the superpixel edges adhered to the image edges and reflected the image structural features, structural and edge priors were considered for a better exploration of the NSS prior. Next, each similar superpixel region was regarded as a searching window to seek the first L most similar patches to each local patch within it. For each similar superpixel region, a specific dictionary was learned to obtain the initial sparse coefficient of each patch. Moreover, to promote the effectiveness of the sparse coefficient for each patch, a weighted sparse coding model was constructed under a constraint of weighted average sparse coefficient of the first L most similar patches. Experimental results demonstrated that the proposed algorithm achieved very competitive denoising performance, especially in image edges and fine structure preservation in comparison with state-of-the-art denoising algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.