In recent years, researchers have paid increasing attention on hyperspectral image (HSI) classification using deep learning methods. To improve the accuracy and reduce the training samples, we propose a double-branch dual-attention mechanism network (DBDA) for HSI classification in this paper. Two branches are designed in DBDA to capture plenty of spectral and spatial features contained in HSI. Furthermore, a channel attention block and a spatial attention block are applied to these two branches respectively, which enables DBDA to refine and optimize the extracted feature maps. A series of experiments on four hyperspectral datasets show that the proposed framework has superior performance to the state-of-the-art algorithm, especially when the training samples are signally lacking.
In recent years, researchers have paid increasing attention on hyperspectral image (HSI) classification using deep learning methods. To improve the accuracy and reduce the training samples, we propose a double-branch dual-attention mechanism network (DBDA) for HSI classification in this paper. Two branches are designed in DBDA to capture plenty of spectral and spatial features contained in HSI. Furthermore, a channel attention block and a spatial attention block are applied to these two branches respectively, which enables DBDA to refine and optimize the extracted feature maps. A series of experiments on four hyperspectral datasets show that the proposed framework has superior performance to the state-of-the-art algorithm, especially when the training samples are signally lacking.
Accurate and efficient text detection in natural scenes is a fundamental yet challenging task in computer vision, especially when dealing with arbitrarily-oriented texts. Most contemporary text detection methods are designed to identify horizontal or approximately horizontal text, which cannot satisfy practical detection requirements for various real-world images such as image streams or videos. To address this lacuna, we propose a novel method called Rotational You Only Look Once (R-YOLO), a robust real-time convolutional neural network (CNN) model to detect arbitrarily-oriented texts in natural image scenes. First, a rotated anchor box with angle information is used as the text bounding box over various orientations. Second, features of various scales are extracted from the input image to determine the probability, confidence, and inclined bounding boxes of the text. Finally, Rotational Distance Intersection over Union Non-Maximum Suppression is used to eliminate redundancy and acquire detection results with the highest accuracy. Experiments on benchmark comparison are conducted upon four popular datasets, i.e., ICDAR2015, ICDAR2013, MSRA-TD500, and ICDAR2017-MLT. The results indicate that the proposed R-YOLO method significantly outperforms state-of-the-art methods in terms of detection efficiency while maintaining high accuracy; for example, the proposed R-YOLO method achieves an F-measure of 82.3% at 62.5 fps with 720 p resolution on the ICDAR2015 dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.