Purpose: Activating mutations within the tyrosine kinase domain of epidermal growth factor receptor (EGFR) are found in approximately 10% to 20% of non^small-cell lung cancer (NSCLC) patients and are associated with response to EGFR inhibitors. The most common NSCLCassociated EGFR mutations are deletions in exon 19 and L858R mutation in exon 21, together accounting for 90% of EGFR mutations. To develop a simple, sensitive, and reliable clinical assay for the identification of EGFR mutations in NSCLC patients, we generated mutation-specific rabbit monoclonal antibodies against each of these two most common EGFR mutations and aimed to evaluate the detection of EGFR mutations in NSCLC patients by immunohistochemistry. Experimental Design:We tested mutation-specific antibodies byWestern blot, immunofluorescence, and immunohistochemistry. In addition, we stained 40 EGFR genotyped NSCLC tumor samples by immunohistochemistry with these antibodies. Finally, with a panel of four antibodies, we screened a large set of NSCLC patient samples with unknown genotype and confirmed the immunohistochemistry results by DNA sequencing. Results: These two antibodies specifically detect the corresponding mutant form of EGFR by Western blotting, immunofluorescence, and immunohistochemistry. Screening a panel of 340 paraffin-embedded NSCLC tumor samples with these antibodies showed that the sensitivity of the immunohistochemistry assay is 92%, with a specificity of 99% as compared with direct and mass spectrometry^based DNA sequencing. Conclusions: This simple assay for detection of EGFR mutations in diagnostic human tissues provides a rapid, sensitive, specific, and cost-effective method to identify lung cancer patients responsive to EGFR-based therapies.Lung cancer is a major cause of cancer-related mortality worldwide and is expected to remain a major health problem for the foreseeable future. Lung cancer is broadly divided into small-cell lung cancer (20% of lung cancers) and non -smallcell lung cancer (NSCLC; 80% of lung cancers). Somatic mutations in the epidermal growth factor receptor (EGFR) gene are found in a subset of NSCLC adenocarcinomas and are associated with sensitivity to the small-molecule EGFR tyrosine kinase inhibitors gefitinib (1, 2) and erlotinib (3). Different EGFR mutations have been reported, but the most common NSCLC-associated EGFR mutations are in-frame deletions in exon 19 (E746_A750del) and the point mutation replacing leucine with arginine at codon 858 in exon 21 (L858R; refs. 3 -5). These two mutations represent 85% to 90% of EGFR mutations in NSCLC patients. Data from clinical research have confirmed that patients with these mutations are highly responsive to EGFR inhibitors including gefitinib and erlotinib (5 -8).Based on these clinical findings, EGFR mutational analysis in lung adenocarcinoma may now be used to guide treatment decisions and to enroll patients in specific arms of clinical trials. Direct DNA sequencing of PCR-amplified genomic DNA has been developed to detect EGFR mutations i...
Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.
Dirofilaria immitis is an important filarial parasite of dogs and cats, and a useful model for human filariasis. Current diagnostic tests for heartworm infection in animals rely on the presence of fecund female worms (usually found 6.5 months post-infection or later) and therefore fail to detect pre-patent infections. Putative pepsin inhibitors from 2 filarial parasites of humans namely Onchocerca volvulus (Ov33, Oc3.6, OvD5B) and Brugia malayi (Bm33), have been shown to be useful in diagnosis of onchocerciasis and lymphatic filariasis, respectively. Previous studies have suggested that a homologue exists in D. immitis (DiT33), which may have potential in diagnosis of heartworm infection. In this study, the isolation and characterization of a cDNA clone encoding DiT33 is described. This cDNA contains 12 bases of the nematode-specific 22 nucleotide spliced leader sequence and encodes a 26.4 kDa-protein with a high level of similarity (87-89%) to other filarial members of the family. DiT33 was over-expressed in E. coli as a fusion with the maltose-binding protein and serological analysis was performed using a panel of clinically defined dog sera. The findings of this study indicate that DiT33 is a promising antigen for the early detection of D. immitis and may be a valuable tool in the control and management of heartworm infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.