Benzoin is a pathologic exudation produced by plants of the family Styrax. It is secreted by traumatic resin ducts after injury, which are derived from parenchymal cells in secondary xylem by schizolysigeny. Some 63 chemical constituents have been isolated and identified from this resin, including balsamic acid esters, lignans and terpenoids. It has a long history of applications, including as incense along with olibanum, a flavor enhancer in the food industry, materials in the daily chemistry industry as well as therapeutic uses. Up to now, high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS) have been widely used in qualitative and quantitative analysis of benzoin. Other technologies, including near-infrared reflectance spectroscopy (NIR), proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and Fourier-transform infrared spectroscopy (FT-IR), have also been used to distinguish different resins. Herein, this paper provides a comprehensive overview of the production process, phytochemistry, traditional uses and quality control of benzoin and looks to the future for promoting its further research and applications.
As a valuable medicinal herb and spice, agarwood is widely used in the fields of daily chemistry, traditional medicine, religion and literary collection. It mainly contains sesquiterpenes and 2-(2-phenylethyl)chromones, which are often used to soothe the body and mind, relieve anxiety, act as an antidepressant and treat insomnia and other mental disorders, presenting a good calming effect. This paper reviews the chemical composition of the essential oils of different sources of agarwood, as well as the progress of research on the sedative and tranquilizing pharmacological activity and mechanism of action of agarwood essential oil (AEO), and then analyzes the current problems of AEO research and its application prospects in the treatment of mental diseases.
Agarwood has been used for the administration of hypnotic therapy. Its aromatic scent induces a relaxed state. However, its aromatic constituents and the underlying molecular effect are still unclear. This study aims to determine the active substance and molecular mechanism of the hypnotic effect of agarwood essential oil (AEO) incense inhalation in insomniac mice. Insomnia models were induced by para-chlorophenylalanine (PCPA, 300 mg/kg) in mice. The sleep-promoting effect was evaluated. Neurotransmitter levels and its receptor were detected to explore the molecular mechanism. The effective components were analyzed by GC-Q/TOF-MS of AEO. The binding mechanisms of the core compounds and core targets were verified by molecular docking. These results showed that AEO inhalation could significantly shorten sleep latency and prolong sleep time, inhibit autonomous activity and exert good sedative and sleep-promoting effects. A mechanistic study showed that AEO inhalation increased the levels of γ-aminobutyric acid (GABAA), the GABAA/glutamic acid (Glu) ratio, 5-hydroxytryptamine (5-HT) and adenosine (AD), upregulated the expression levels of GluR1, VGluT1 and 5-HT1A and downregulated 5-HT2A levels. Component analysis showed that the most abundant medicinal compounds were eremophilanes, cadinanes and eudesmanes. Moreover, the docking results showed that the core components stably bind to various receptors. The study demonstrated the bioactive constituents and mechanisms of AEO in its sedative and hypnotic effects and its multicomponent, multitarget and multipathway treatment characteristics in PCPA-induced insomniac mice. These results provide theoretical evidence for insomnia treatment and pharmaceutical product development with AEO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.