An advanced process of mandrel forging and necking (MFN) was proposed for a hollow shaft with an inner stepped hole. The conventional mandrel forging process with an equal-diameter mandrel was used to form the outer stepped preform, and then the preform was formed into the hollow shaft with an inner stepped hole using the MFN process. A numerical simulation model was established to study the effect of the pressing reduction and the rotation angle on the MFN process. A preforming design method based on the isometric radius difference was given according to the principle of the equal volume, and the parameter relationships between the outer and inner stepped shapes were clarified. The experimental deformation laws of the MFN process were consistent with those obtained by the simulation. The MFN process and its preforming design method provide a new free forging approach for large hollow forgings with inner stepped holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.