We take the tensor network describing explicit p-adic CFT partition functions proposed in [1], and considered boundary conditions of the network describing a deformed Bruhat-Tits (BT) tree geometry. We demonstrate that this geometry satisfies an emergent graph Einstein equation in a unique way that is consistent with the bulk effective matter action encoding the same correlation function as the tensor network, at least in the perturbative limit order by order away from the pure BT tree. Moreover, the (perturbative) definition of the graph curvature in the Mathematics literature [2][3][4] naturally emerges from the consistency requirements of the emergent Einstein equation. This could provide new insights into the understanding of gravitational dynamics potentially encoded in more general tensor networks.
As an extended companion paper to [1], we elaborate in detail how the tensor network construction of a p-adic CFT encodes geometric information of a dual geometry even as we deform the CFT away from the fixed point by finding a way to assign distances to the tensor network. In fact we demonstrate that a unique (up to normalizations) emergent graph Einstein equation is satisfied by the geometric data encoded in the tensor network, and the graph Einstein tensor automatically recovers the known proposal in the mathematics literature, at least perturbatively order by order in the deformation away from the pure Bruhat-Tits Tree geometry dual to pure CFTs. Once the dust settles, it becomes apparent that the assigned distance indeed corresponds to some Fisher metric between quantum states encoding expectation values of bulk fields in one higher dimension. This is perhaps a first quantitative demonstration that a concrete Einstein equation can be extracted directly from the tensor network, albeit in the simplified setting of the p-adic AdS/CFT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.