Nickel oxide (NiO) nanoflowers, prepared by thermal decomposition, exhibit anomalous magnetic properties far below the blocking temperature, i.e., a cusp in both the zero-field-cooled and field-cooled curves at about 21 K. Detailed characterization discloses that the individual NiO nanoflower consists of porous crystals with holes (1.0-1.5 nm in size) inside. We believe that the low temperature magnetic feature observed here could be a new kind of spin transition for the uncompensated spins around the holes and will trigger more studies in other nanostructured antiferromagnetic materials.
The fraction of absorbed photosynthetically active radiation (FAPAR) characterizes the energy-absorption ability of the vegetation canopy. It is a critical input to many land-surface models such as crop growth models, net primary productivity models, and climate models. There is a great need for FAPAR products derived from remote-sensing data. The objective of this research is to develop a new instantaneous quantitative FAPAR model based on the law of energy conservation and the concept of recollision probability ( ). Using the ray-tracing method, the FAPAR-P model separates direct energy absorption by the canopy from energy absorption caused by multiple scattering between the soil and the canopy. Direct sunlight and diffuse skylight are also considered. This model has a clear physical meaning and can be applied to continuous and discrete vegetation. The model was validated by Monte Carlo (MC) simulation and field measurements in the Heihe River basin, China, which proved its reliability for FAPAR calculations.Index Terms-Clumping index, FAPAR-P model, fraction of absorbed photosynthetically active radiation (FAPAR), recollision probability ( ).
Reduced dimensional lead halide perovskites (RDPs) have attracted great research interest in diverse optical and optoelectronic fields. However, their poor stability is one of the most challenging obstacles prohibiting them from practical applications. Here, we reveal that ultrastable laurionite-type Pb(OH)Br can spontaneously encapsulate the RDPs in their formation solution without introducing any additional chemicals, forming RDP@Pb(OH)Br core− shell microparticles. Interestingly, the number of the perovskite layers within the RDPs can be conveniently and precisely controlled by varying the amount of CsBr introduced into the reaction solution. A single RDP@Pb(OH)Br core−shell microparticle composed of RDP nanocrystals with different numbers of perovskite layers can be also prepared, showing different colors under different light excitations. More interestingly, barcoded RDP@Pb(OH)Br microparticles with different parts emitting different lights can also be prepared. The morphology of the emitting microstructures can be conveniently manipulated. The RDP@ Pb(OH)Br microparticles demonstrate outstanding environmental, chemical, thermal, and optical stability, as well as strong resistance to anion exchange processes. This study not only deepens our understanding of the reaction processes in the extensively used saturation recrystallization method but also points out that it is highly possible to dramatically improve the performance of the optoelectronic devices through manipulating the spontaneous formation process of Pb(OH)Br.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.