Both PK-TURBT and HoL-TURBT might prove to be preferable alternatives to CM-TURBT management of non-muscle invasive bladder cancer. PK-TURBT and HoL-TURBT, however, did not demonstrate an obvious advantage over CM-TURBT in tumor recurrence rate.
Objectives: MiR-21 induces neoplastic transformation, cell proliferation, and metastasis and downregulates programmed cell death4 (PDCD4) in some cancers. The aim of this study was to investigate the roles and interactions of PDCD4 and miR-21 in human renal cell carcinoma (RCC). Materials and Methods: A total of 32 paired tumor and normal tissue specimens from RCC patients as well as three renal cancer cell lines (786-O, A498, caki-1) and one normal epithelial kidney cell line (HK-2) were studied. The expression levels of PDCD4 (protein and mRNA) and miR-21 were examined by Western blot analysis and by qRT-PCR and luciferase reporter assays. Furthermore, we transfected 786-O cells with pre-miR-21 (mimics) and anti-miR-21 (inhibitor) and then again analyzed the expression of PDCD4 protein and mRNA, and determined cell proliferation and transformation capabilities by EDU and soft agar colony formation assay. Results: MiR-21 expression was significantly upregulated in RCC, metastatic RCC specimens and renal cancer cell lines (A498, 786-O, caki-1) compared to normal non-metastatic RCC specimens and HK-2 cells (P<0.05). In contrast, PDCD4 protein expression significantly decreased (P<0.05), whereas PDCD4 mRNA expression remained unaltered (P>0.05). Moreover, we observed a significant reduction in PDCD4 protein levels in miR-21mimic-transfected cells, but a significant increase in miR-21inhibitor-transfected cells (P<0.05), whereas PDCD4 mRNA was practically unaltered (P>0.05). Furthermore, miR-21mimic-transfected cells exhibited increased cell proliferation and transformation capacity according to EDU analysis and soft agar formation assay, whereas miR-21inhibitor-transfected cells exhibited the opposite phenomenon(P<0.05). Conclusions: MiR-21 not only promoted cancer cell hyperplasia and contributed to tumor cell transformation and metastasis, but also post-transcriptionally downregulated PDCD4 protein expression. PDCD4 and miR-21 expression levels potentially play an important role in renal cell cancer.
Stromal cell populations in the tumor microenvironment (TME) play a critical role in the oncogenesis and metastasis of renal cell carcinoma. In this study, we found that there are α-smooth muscle actin positive (α-SMA (+)) cells in the stroma of clear cell renal cell carcinoma (ccRCC) tissues, and their numbers are significantly associated with poor survival in ccRCC patients. Interleukin 6 (IL-6) is a critical diver that induces α-SMA (+) cells in ccRCC tissues via promotion of epithelial to mesenchymal transition (EMT) and stimulates migration and invasion in ccRCC. Peritumoral CD4+ T cells are the main source of IL-6 in ccRCC tissues. In addition to biochemical factors, mechanical compression within tumors affects tumor cell behavior. Tumors grown in a confined space exhibit intratumoral compressive stress and, with sufficient pressure, stress-stimulated migration of cancer cells. Moreover, a combination of IL-6 secreted by CD4+ T cells and growth-induced solid stress further contributes to the regulation of cancer cell morphogenesis, EMT and acquisition of a stemness phenotype. The effects in the combination group were driven by the Akt/GSK-3β/β-catenin signaling pathway, and deregulation of β-catenin expression was predictive of poor outcome in ccRCC patients. Notably, the expression of a cancer stem cell marker, CD44, was correlated with T stage, high Fuhrman grade and metastasis in ccRCC. These data provide evidence for new stress-reducing and IL-6 targeting strategies in cancer therapy.
Recently, long noncoding RNAs have emerged as new gene regulators and prognostic markers in several cancers, including renal cell carcinoma (RCC). Here, we focused on the long noncoding RNA lung cancer associated transcript 1 (LUCAT1) based on clear cell RCC (ccRCC) the cancer genome atlas (TCGA) data. However, whether aberrant expression of LUCAT1 in ccRCC is correlated with malignancy, metastasis or prognosis has not been elucidated. In the current study, we found that the expression of LUCAT1 was upregulated in ccRCC tissues and cancer cell lines. Upregulated LUCAT1 was positively correlated with larger tumor size, advanced tumor-node-metastasis (TNM) stage, higher smoking frequency, nodal metastasis and shorter overall survival in patients with ccRCC. Inhibition of LUCAT1 by small interfering RNA reduced cell proliferation and invasion of ccRCC cells in vitro. In vivo assay showed that the tumor volume and weight were lower in the group of LUCAT1 inhibition than that in the control group. We then found that LUCAT1 directly bound and inhibited the expression of micoRNA-495-3p (miR-495-3p), which subsequently regulated the expression of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1). Collectively, LUCAT1 was critical for proliferation and invasion of ccRCC cells by regulating miR-495-3p and SATB1. Our findings indicated that LUCAT1 and miR-495-3p may offer potential novel therapeutic targets of treatment of ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.