Immunotherapy with checkpoint inhibitors has greatly prolonged the overall survival of cancer patients in melanoma and many other cancer types. However, only a subset of patients shows clinical responses from these interventions, which was predicated by the T cell-inflamed tumor microenvironment. T cell-inflamed phenotype is characterized by the infiltration of CD8+ T cells, CD8α/CD103-lineage dendritic cells (DCs), as well as high density of forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) that are associated with the efficacy of immune checkpoint blockade. A number of regulators has been associated with T cell-inflammation in the tumor microenvironment, and WNT/β-catenin signaling is one of the best characterized. The tumor-intrinsic WNT/β-catenin signaling activation is frequently associated with poor spontaneous T cell infiltration across most human cancers. In this article, we review the essential roles of WNT/β-catenin signaling in the T cell-inflamed and non-T cell-inflamed tumor microenvironment, including the development and function of immune cells, activation of immune exclusion of tumor cells, and cancer immunosurveillance. We also discuss the impact of this pathway in driving the non-T cell-inflamed tumor microenvironment in other tumor types. To improve immunotherapy efficacy, we argue that targeting Wnt/β-catenin signaling should be a high priority for combinational cancer therapy to restore T cell infiltration.
BackgroundIncreasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely unknown.Methodology/Principal FindingsGenome-wide profiling of the trimethylation of histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) was performed using chromatin immunoprecipitation coupled with whole genome promoter microarray (ChIP-chip) techniques. Comparison of the ChIP-chip data and microarray gene expression data revealed that loss and/or gain of H3K4me3 and/or H3K27me3 were strongly associated with differential gene expression, including microRNA expression, between prostate cancer and primary cells. The most common switches were gain or loss of H3K27me3 coupled with low effect on gene expression. The least prevalent switches were between H3K4me3 and H3K27me3 coupled with much higher fractions of activated and silenced genes. Promoter patterns of H3K4me3 and H3K27me3 corresponded strongly with coordinated expression changes of regulatory gene modules, such as HOX and microRNA genes, and structural gene modules, such as desmosome and gap junction genes. A number of epigenetically switched oncogenes and tumor suppressor genes were found overexpressed and underexpressed accordingly in prostate cancer cells.Conclusions/SignificanceThis work offers a dynamic picture of epigenetic switches in carcinogenesis and contributes to an overall understanding of coordinated regulation of gene expression in cancer. Our data indicate an H3K4me3/H3K27me3 epigenetic signature of prostate carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.