The attention towards links of atmospheric parameter variation and earthquakes has increased exponentially by utilizing new methods and more accurate observations. Persistent research makes it possible to gain insight into the precursor mechanism of earthquakes. In this paper, we studied the universality of detecting atmospheric anomalies associated with earthquakes based on tidal force fluctuation in China for earthquakes of Ms > 6.0, and explored the influence of tidal force on tectonic stress. The data of air temperature, geopotential height, ozone mixing ratio, and relative humidity from the National Center for Environmental Prediction (NCEP) were analyzed to reveal the spatiotemporal variation of atmospheric anomalies at multiple isobaric surfaces. Furthermore, the coupling of atmospheric parameters was investigated. The results showed that continuous solicitation exerted by tidal forces could change the strength of tectonic stress that causes earthquakes. The evolution pattern of air temperature, geopotential height, and relative humidity could be supported by atmospheric thermal vertical diffusion, while the anomalies of ozone mixing ratio was not evident. This verified the feasibility of detecting multi-parameter atmospheric anomalies associated with earthquakes based on tidal force fluctuation. Our results provide more evidence for understanding the atmospheric precursor characteristics of earthquakes.
Kuh-e-Namak (Dashti) namakier is one of the most active salt diapirs along the Zagros fold–thrust belt in Iran. Its surface deformation should be measured to estimate its long-term kinematics. Ten Sentinel-2 optical images acquired between October 2016 and December 2019 were processed by using Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) method. Forty-seven Sentinel-1 ascending Synthetic Aperture Radar (SAR) images acquired between April 2017 and December 2019 were processed by using Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) method. The deformation of Kuh-e-Namak (Dashti) namakier was measured using both methods. Then, meteorological data were utilized to explore the relationship between the kinematics of the namakier and weather conditions and differences in macrodeformation behavior of various rock salt types. The advantages and disadvantages of COSI-Corr and SBAS-InSAR methods in measuring the deformation of the namakier were compared. The results show that: (1) The flank subsides in the dry season and uplifts in the rainy season, whereas the dome subsides in the rainy season and uplifts in the dry season. Under extreme rainfall conditions, the namakier experiences permanent plastic deformation. (2) The “dirty” rock salt of the namakier is more prone to flow than the “clean” rock salt in terms of macrodeformation behavior. (3) In the exploration of the kinematics of the namakier via the two methods, COSI-Corr is superior to SBAS-InSAR on a spatial scale, but the latter is superior to the former on a time scale.
Comprehensive analyses of seismic precursory characteristics may provide evidence for the possible mechanisms of lithosphere‐atmosphere‐ionosphere coupling (LAIC). The integrated monitoring data from space and ground measurements makes it possible to reveal the potential earthquake precursory pattern obeying LAIC. In this paper, we study seismic precursors from air temperature data of the National Center for Environmental Prediction (NCEP), Global Navigation Satellite System (GNSS) based Total Electron Content (TEC) and electron density retrieved from Swarm satellite (Alpha) data in two Mw ≥ $\ge $ 7.0 earthquakes in Mexico in 2020–2021. We find seismic thermal anomalies can be identified from temperature variation in the lithosphere and atmosphere by improved tidal force fluctuant analysis (TFFA). The spatial‐temporal evolution of seismic thermal anomalies is significantly different from that of non‐seismic thermal anomalies. In addition, synergistic observations of the Swarm Alpha satellite and GNSS stations can provide more comprehensive information about perturbations in the ionosphere. The results show that anomalies originate along fault lineaments near the epicenter, leading to air pressure gradient and ionization process in the atmosphere, followed by ionospheric perturbations. Furthermore, composite anomalies of LAIC first appear around a month before earthquakes and tend to recur several times over earthquake preparation phases. Our study provides more evidence for understanding the characteristics of earthquake precursors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.