Cattle have been proposed as the natural reservoir of a novel member of the virus family Orthomyxoviridae, which has been tentatively classified as influenza D virus (IDV). Although isolated from sick animals, it is unclear whether IDV causes any clinical disease in cattle. To address this aspect of Koch's postulates, three dairy calves (treatment animals) held in individual pens were inoculated intranasally with IDV strain D/bovine/Mississippi/C00046N/2014. At 1 day postinoculation, a seronegative calf (contact animal) was added to each of the treatment animal pens. The cattle in both treatment and contact groups seroconverted, and virus was detected in their respiratory tracts. Histologically, there was a significant increase in neutrophil tracking in tracheal epithelia of the treatment calves compared to control animals. While infected and contact animals demonstrated various symptoms of respiratory tract infection, they were mild, and the calves in the treatment group did not differ from the controls in terms of heart rate, respiratory rate, or rectal temperature. To mimic zoonotic transmission, two ferrets were exposed to a plastic toy fomite soaked with infected nasal discharge from the treatment calves. These ferrets did not shed the virus or seroconvert. In summary, this study demonstrates that IDV causes a mild respiratory disease upon experimental infection of cattle and can be transmitted effectively among cattle by in-pen contact, but not from cattle to ferrets through fomite exposure. These findings support the hypothesis that cattle are a natural reservoir for the virus. IMPORTANCE A novel influenza virus, tentatively classified as influenza D virus (IDV), was identified in swine, cattle, sheep, and goats. Among these hosts, cattle have been proposed as the natural reservoir. In this study, we show that cattle experimentally infected with IDV can shed virus and transmit it to other cattle through direct contact, but not to ferrets through fomite routes. IDV caused minor clinical signs in the infected cattle, fulfilling another of Koch's postulates for this novel agent, although other objective clinical endpoints were not different from those of control animals. Although the disease observed was mild, IDV induced neutrophil tracking and epithelial attenuation in cattle trachea, which could facilitate coinfection with other pathogens, and in doing so, predispose animals to bovine respiratory disease.
A new member of the Orthomyxoviridae family, influenza D virus (IDV), was first reported in swine in the Midwest region of the United States. This study aims to extend our knowledge on the IDV epidemiology and to determine the impact of bovine production systems on virus spread. A total of 15 isolates were recovered from surveillance of bovine herds in Mississippi, and two genetic clades of viruses co-circulated in the same herd. Serologic assessment from neonatal beef cattle showed 94% seropositive, and presumed maternal antibody levels were substantially lower in animals over six months of age. Active IDV transmission was shown to occur at locations where young, weaned, and comingled calves were maintained. Serological characterization of archived sera suggested that IDV has been circulating in the Mississippi cattle populations since at least 2004. Continuous surveillance is needed to monitor the evolution and epidemiology of IDV in the bovine population.
Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.
This study reports four sporadic cases of H3N2 canine influenza in southern China, which were identified from sick dogs from May 2006 to October 2007. The evolutionary analysis showed that all eight segments of these four viruses are avian-origin and phylogenetically close to the H3N2 canine influenza viruses reported earlier in South Korea. Systematic surveillance is required to monitor the disease and evolutionary behavior of this virus in canine populations in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.