a b s t r a c tNumerous phenolic compounds have been reported to have an inhibitory role on amyloid formation of proteins. The present study, utilizing lysozyme as a model system, examined the anti-amyloidogenic effects of phenol and three diphenol epimers. The results indicated that catechol and hydroquinone dose-dependently inhibited lysozyme fibrillation and covalently bound to the peptide chains to form quinoproteins, showing a similar effect to benzoquinone. In contrast, phenol and resorcinol did not modify the peptide with a quinone moiety, showing no effect on lysozyme fibrillation. We suggest that quinone intermediates are the active form for a phenolic compound to inhibit lysozyme fibrillation. The modification of lysozyme with quinone moieties alters the interacting forces between peptide chains and consequently interrupts the process of lysozyme fibrillation. Structured summary of protein interactions:Lysozyme and Lysozyme bind by fluorescence technology (View interaction). Lysozyme and Lysozyme bind by transmission electron microscopy (View interaction).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.