Survival of retinal ganglion cells (RGC) is compromised in several vision-threatening disorders such as ischemic and hypertensive retinopathies and glaucoma. Pigment epithelium-derived factor (PEDF) is a naturally occurring pleiotropic secreted factor in the retina. PEDF produced by retinal glial (Müller) cells is suspected to be an essential component of neuron-glial interactions especially for RGC, as it can protect this neuronal type from ischemia-induced cell death. Here we show that PEDF treatment can directly affect RGC survival in vitro. Using Müller cell-RGC-co-cultures we observed that activity of Müller-cell derived soluble mediators can attenuate hypoxia-induced damage and RGC loss. Finally, neutralizing the activity of PEDF in glia-conditioned media partially abolished the neuroprotective effect of glia, leading to an increased neuronal death in hypoxic condition. Altogether our results suggest that PEDF is crucially involved in the neuroprotective process of reactive Müller cells towards RGC.
Retinal glial (Müller) cells are involved in a wide range of developmental mechanisms, including axon guidance and angiogenesis. This study was undertaken to explore whether Netrin-4, an axonal guidance molecule, is expressed by Müller cells and promotes angiogenesis-related activities. Netrin-4 was found through all retinal layers, and its expression was demonstrated in Müller cells, retinal pigment epithelium cells and bovine retinal endothelial cells (BRECs). Co-localization of Netrin-4 with Müller cell-specific molecules [cellular retinaldehyde-binding protein (cRALBP), vimentin] was observed in the ganglion cell layer, nerve fiber layer, and at the outer limiting membrane. Under hypoxic conditions, the release of Netrin-4 from Müller cells was increased, with mRNA levels upregulated in a hypoxia-inducible factor-1-dependent manner and dependent on the concomitantly induced release of vascular endothelial growth factor. These findings were consistent with an intensified immunofluorescence of Netrin-4 labeling in the postischemic retinas after ischemia-reperfusion. Netrin-4 stimulated BRECs to increase phosphorylation of the mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK)-1/-2, and p38, in a dose-dependent manner. Synthetic inhibitors of the MAP kinases were able to suppress Netrin-4-induced migration and proliferation of BRECs suggesting that both MAP kinases are differentially involved in Netrin-4-induced angiogenesis. Two receptors for Netrins, i.e., deleted in colorectal cancer (DCC) and uncoordinated-5-homolog 1 (Unc5H1), were detected in BRECs. DCC is at least partially required for Netrin-4-induced activation of ERK-1/-2. These data suggest that Müller glial cells contribute to, and may modulate, retinal Netrin-4 levels. This may be a novel pathway of Müller cell-mediated control of retinal angiogenesis, particularly under hypoxic/ischemic conditions when the cells upregulate Netrin-4 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.