When dealing with complex thermal infrared (TIR) tracking scenarios, the single category feature is not sufficient to portray the appearance of the target, which drastically affects the accuracy of the TIR target tracking method. In order to address these problems, we propose an adaptively multi-feature fusion model (AMFT) for the TIR tracking task. Specifically, our AMFT tracking method adaptively integrates hand-crafted features and deep convolutional neural network (CNN) features. In order to accurately locate the target position, it takes advantage of the complementarity between different features. Additionally, the model is updated using a simple but effective model update strategy to adapt to changes in the target during tracking. In addition, a simple but effective model update strategy is adopted to adapt the model to the changes of the target during the tracking process. We have shown through ablation studies that the adaptively multi-feature fusion model in our AMFT tracking method is very effective. Our AMFT tracker performs favorably on PTB-TIR and LSOTB-TIR benchmarks compared with state-of-the-art trackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.