IL-37 is a potent inhibitor of innate immunity by shifting the cytokine equilibrium away from excessive inflammation. Psoriasis is thought to be initiated by abnormal interactions between the cutaneous keratinocytes and systemic immune cells, triggering keratinocyte hyperproliferation. In the current study, we assessed IL-37 in two well-known psoriasis models: a human keratinocyte cell line (HaCaT) and the keratin 14 VEGF-A–transgenic mouse model. First, we used the HaCaT cell line, which was transiently transfected with an overexpressing IL-37 vector, and tested the effect of IL-37 on these cells using a mixture of five proinflammatory cytokines. IL-37 was effective in suppressing the production of CXCL8, IL-6, and S100A7, which were highly upregulated by the mixture of five proinflammatory cytokines. Keratin 14 VEGF-A–transgenic mice were treated with plasmid coding human IL-37 sequence–formulated cationic liposomes, and we observed potent immunosuppressive effects over the 18-d period. In this model, we observed reduced systemic IL-10 levels, local IFN-γ gene transcripts, as well as mild mast cell infiltration into the psoriatic lesions of the mice. Immunohistochemical analysis indicated that IL-37 was expressed by effector memory T cells, as well as macrophages, in human psoriatic plaques. In conclusion, our studies strongly indicate that IL-37 plays a potent immunosuppressive role in the pathogenesis of both experimental psoriasis models in vitro and in vivo by downregulating proinflammatory cytokines. Importantly, our findings highlight new therapeutic strategies that can be designed to use this immunosuppressive anti-inflammatory cytokine in psoriasis and other inflammatory cutaneous diseases.
Aims After myocardial infarction (MI), injured cardiomyocytes recruit neutrophils and monocytes/macrophages to myocardium, which in turn initiates inflammatory and reparative cascades, respectively. Either insufficient or excessive inflammation impairs cardiac healing. As an endogenous inhibitor of neutrophil adhesion, EDIL3 plays a crucial role in inflammatory regulation. However, the role of EDIL3 in MI remains obscure. We aimed to define the role of EDIL3 in cardiac remodeling after MI. Methods and Results Serum EDIL3 levels in MI patients were negatively associated with MI biomarkers. Consistently, WT mice after MI showed low levels of cardiac EDIL3. Compared with WT mice, Edil3-/- mice showed improvement of post-MI adverse remodeling, as they exhibited lower mortality, better cardiac function, shorter scar length and smaller LV cavity. Accordingly, infarcted hearts of Edil3-/- mice contained fewer cellular debris and lower amounts of fibrosis content, with decreased collagen I/III expression and the percentage of α-smooth muscle actin (α-SMA) myofibroblasts. Mechanistically, EDIL3 deficiency did not affect the recruitment of monocytes or T cells, but enhanced neutrophil recruitment and following expansion of pro-inflammatory Mertk-MHC-IIlo-int (myeloid-epithelial-reproductive tyrosine kinase/major histocompatibility complex II) macrophages. The injection of neutrophil-specific C-X-C motif chemokine receptor 2 (CXCR2) antagonist eliminated the differences in macrophage polarization and cardiac function between WT and Edil3-/- mice after MI. Neutrophil extracellular traps (NETs), which were more abundant in the hearts of Edil3-/- mice, contributed to Mertk-MHC-IIlo-int polarization via toll-like receptor 9 pathway. The inhibition of NET formation by treatment of neutrophil elastase inhibitor or DNase I impaired macrophage polarization, increased cellular debris and aggravated cardiac adverse remodeling, thus removed the differences of cardiac function between WT and Edil3-/- mice. Totally, EDIL3 plays an important role in NET-primed macrophage polarization and cardiac remodeling during MI. Conclusion We not only reveal that EDIL3 deficiency ameliorates adverse cardiac healing via NET-mediated pro-inflammatory macrophage polarization but also discover a new crosstalk between neutrophil and macrophage after MI. Translational Perspective We established EDIL3 as a critical regulator of neutrophil recruitment and macrophage polarization during post-MI cardiac remodeling. EDIL3 may be a candidate prognostic biomarker and drug target for cardiovascular diseases. The novel pathways and mechanisms revealed in this study has renewed our understanding of the role of leukocyte adhesion inhibitors in cardiovascular disease. Meanwhile, our study reaffirmed the indispensable role of inflammation in the healing process, thereby prompting the reevaluation of post-MI anti-inflammatory treatments.
Interleukin-37b (hereafter called IL-37) was identified as fundamental inhibitor of natural and acquired immunity. The molecular mechanism and function of IL-37 in colorectal cancer (CRC) has been elusive. Here, we found that IL-37 transgenic (IL-37tg) mice were highly susceptible to colitis-associated colorectal cancer (CAC) and suffered from dramatically increased tumor burdens in colon. Nevertheless, IL-37 is dispensable for intestinal mutagenesis, and CRC cell proliferation, apoptosis, and migration. Notably, IL-37 dampened protective cytotoxic T cell-mediated immunity in CAC and B16-OVA models. CD8+ T cell dysfunction is defined by reduced retention and activation as well as failure to proliferate and produce cytotoxic cytokines in IL-37tg mice, enabling tumor evasion of immune surveillance. The dysfunction led by IL-37 antagonizes IL-18–induced proliferation and effector function of CD8+ T cells, which was dependent on SIGIRR (single immunoglobulin interleukin-1 receptor-related protein). Finally, we observed that IL-37 levels were significantly increased in CRC patients, and positively correlated with serum CRC biomarker CEA levels, but negatively correlated with the CD8+ T cell infiltration in CRC patients. Our findings highlight the role of IL-37 in harnessing antitumor immunity by inactivation of cytotoxic T cells and establish a new defined inhibitory factor IL-37/SIGIRR in cancer-immunity cycle as therapeutic targets in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.