Developing a universal strategy to design piezochromic luminescent materials with desirable properties remains challenging. Here, we report that insertion of a non-emissive molecule into a donor (perylene) and acceptor (1,2,4,5-tetracyanobezene) binary cocrystal can realize fine manipulation of intermolecular interactions between perylene and 1,2,4,5-tetracyanobezene (TCNB) for desirable piezochromic luminescent properties. A continuous pressure-induced emission enhancement up to 3 GPa and a blue shift from 655 to 619 nm have been observed in perylene-TCNB cocrystals upon THF insertion, in contrast to the red-shifted and quenched emission observed when compressing perylene-TCNB cocrystals and other cocrystals reported earlier. By combining experiment with theory, it is further revealed that the inserted non-emissive THF forms blue-shifting hydrogen bonds with neighboring TCNB molecules and promote a conformation change of perylene molecules upon compression, causing the blue-shifted and enhanced emission. This strategy remains valid when inserting other molecules as non-emissive component into perylene-TCNB cocrystals for abnormal piezochromic luminescent behaviors.
Hierarchical SnO2 blooming nanoflowers were successfully fabricated via a simple yet facile hydrothermal method with the help of different surfactants. Here we focus on exploring the promotion effects of surfactants on the self-assembly of 2D SnO2 nanosheets into 3D SnO2 flower-like structures as well as their gas-sensing performances. The polyporous flower-like SnO2 sensor exhibits excellent gas-sensing performances to ethanol and H2S gas due to high porosity when polyvinyl pyrrolidone is added into the precursor solution as a surfactant. The response/recovery times were about 5 s/8 s for 100 ppm ethanol and 4 s/20 s for 100 ppm H2S, respectively. Especially, the maximum response value of H2S is estimated to be 368 at 180 °C, which is one or two orders of magnitude higher than that of other test gases in this study. That indicates that the sensor fabricated with the help of polyvinyl pyrrolidone has good selectivity to H2S.
A novel piezo-activated luminescent material with wide range modulation of the luminescence wavelength and a giant intensity enhancement upon compression was prepared using a strategy of molecular doping. The doping...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.