Machine metaphor understanding is one of the major topics in NLP. Most of the recent attempts consider it as classification or sequence tagging task. However, few types of research introduce the rich linguistic information into the field of computational metaphor by leveraging powerful pre-training language models. We focus a novel reading comprehension paradigm for solving the token-level metaphor detection task which provides an innovative type of solution for this task. We propose an end-to-end deep metaphor detection model named DeepMet based on this paradigm. The proposed approach encodes the global text context (whole sentence), local text context (sentence fragments), and question (query word) information as well as incorporating two types of part-of-speech (POS) features by making use of the advanced pretraining language model. The experimental results by using several metaphor datasets show that our model achieves competitive results in the second shared task on metaphor detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.