In this paper, the adaptive state estimation and state-feedback stabilization problems for a class of nonlinear stochastic systems with unknown constant parameters are studied. The sequential design methods are proposed to construct the adaptive controllers. Adaptive state and parameter estimators are designed by using a stochastic Lyapunov method and the separation theory of the design for the state-feedback gain and observer gain, which guarantees that the closed-loop system is asymptotically stable in the mean-square sense. Sufficient conditions for the existence of parameters estimator are given in terms of linear matrix inequalities. Finally, the numerical examples are provided to illustrate the feasibility of the proposed theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.