In shotgun proteomics, it is essential to accurately determine the proteolytic products of each protein in the sample for subsequent identification and quantification, because these proteolytic products are usually taken as the surrogates of their parent proteins in the further data analysis. However, systematical studies about the commonly used proteases in proteomics research are insufficient, and there is a lack of easy-to-use tools to predict the digestibilities of these proteolytic products. Here, we propose a novel sequence-based deep learning model -DeepDigest, which integrates convolutional neural networks and long-short term memory networks for digestibility prediction of peptides. DeepDigest can predict the proteolytic cleavage sites for eight popular proteases including trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN and LysargiNase. Compared with traditional machine learning algorithms, DeepDigest showed superior performance for all the eight proteases on a variety of datasets. Besides, some interesting characteristics of different proteases were revealed and discussed.
In shotgun proteomics, it is essential to accurately determine the proteolytic products of each protein in the sample for subsequent identification and quantification, because these proteolytic products are usually taken as the surrogates of their parent proteins in the further data analysis. However, systematical studies about the commonly used proteases in proteomics research are insufficient, and there is a lack of easy-to-use tools to predict the digestibilities of these proteolytic products. Here, we propose a novel sequence-based deep learning model -DeepDigest, which integrates convolutional neural networks and long-short term memory networks for digestibility prediction of peptides. DeepDigest can predict the proteolytic cleavage sites for eight popular proteases including trypsin, ArgC, chymotrypsin, GluC, LysC, AspN, LysN and LysargiNase. Compared with traditional machine learning algorithms, DeepDigest showed superior performance for all the eight proteases on a variety of datasets. Besides, some interesting characteristics of different proteases were revealed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.