With the development of 5G communication technology, more and more applications could be integrated into one system. Edge computing system and mixed-criticality system may integrate tasks of different criticality levels, which brings better balance in isolation and performance. Such advantages make it gradually become a research hotspot in edge computing and real-time systems with 5G. The important content of designing a mixed-criticality system is how to reduce interference between tasks and how to schedule tasks efficiently to ensure that tasks of different criticality levels can meet time constraints. Instruction extension and hardware software cooperative support may be an effective solution. Based on a fine-grained multithreaded RISC-V processor, this article gives some extensions for real-time operations and proposes a hardware software cooperative real-time scheduling mechanism. Experimental results show that, compared with FlexPRET hardware, the performance of thread scheduling is improved by 22.94% on average. Compared with software scheduling, the performance of scheduling same programs and multiple programs are improved by 15.46% and 26.00%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.