Stretchable piezoelectric nanogenerators are highly desirable for power supply of flexible electronics. Piezoelectric composite material is the most effective strategy to render piezoelectric nanogenerators stretchable. However, the generated output performance is unsatisfactory due to the low piezoelectric phase proportion. Here we demonstrate a high-performance Pb(Zr 0.52 Ti 0.48 )O 3 (PZT)-based stretchable piezoelectric nanogenerator (HSPG). The proposed HSPG exhibits excellent output performance with a power density of ∼81.25 μW/cm 3 , dozens of times higher than previously reported results. Mixing technique, instead of conventional stirring technology, is used to incorporate PZT particles into solid silicone rubber. The filler distribution homogeneity in matrix is thus remarkably improved, allowing higher filler composition. The PZT proportion in composite can be increased to 92 wt % with satisfactory stretchability of 30%. On the basis of the excellent electrical and mechanical properties, the proposed HSPG can be attached to human body to harvest body kinetic energy with multiple deformation modes. The obtained energy can be used to operate commercial electronics or be stored into a capacitor. Therefore, our HSPG has great potential application in powering flexible electronics.
Ba 0.5 Sr 0.5 Ti O 3 – Mg 2 Ti O 4 composite ceramics are fabricated via the conventional solid-state reaction method. The microstructures, dielectric tunability, and microwave properties of composite ceramics are investigated. The dielectric constant is tailored from 335 to 35 by manipulating the addition of Mg2TiO4 from 50% to 80% weight ratio and the tunability is 10.8% measured at 10kHz for the 80% Mg2TiO4 addition. The composite ceramics with high Q value (>200) at L band are useful for potential tunable microwave device applications in the wireless communication system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.