This study was conducted to examine the effect of active dry yeast (ADY) supplementation on lactation performance, ruminal fermentation patterns, and CH 4 emissions and to determine an optimal ADY dose. Sixty Holstein dairy cows in early lactation (52 ± 1.2 DIM) were used in a randomized complete design. Cows were blocked by parity (2.1 ± 0.2), milk production (35 ± 4.6 kg/d), and body weight (642 ± 53 kg) and assigned to 1 of 4 treatments. Cows were fed ADY at doses of 0, 10, 20, or 30 g/d per head for 91 d, with 84 d for adaptation and 7 d for sampling. Although dry matter intake was not affected by ADY supplementation, the yield of actual milk, 4% fat-corrected milk, milk fat yield, and feed efficiency increased quadratically with increasing ADY supplementation. Yields of milk protein and lactose increased linearly with increasing ADY doses, whereas milk urea nitrogen concentration and somatic cell count decreased quadratically. Ruminal pH and ammonia concentration were not affected by ADY supplementation, whereas ruminal concentration of total volatile fatty acid increased quadratically. Digestibility of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, nonfiber carbohydrate, and crude protein increased quadratically with increasing ADY supplementation. Supplementation of ADY did not affect blood concentration of total protein, triglyceride, aspartate aminotransferase, and alanine aminotransferase, whereas blood urea nitrogen, cholesterol, and nonesterified fatty acid concentrations decreased quadratically with increasing ADY supplementation. Methane production was not affected by ADY supplementation when expressed as grams per day or per kilogram of actual milk yield, dry matter intake, digested organic matter, and digested nonfiber carbohydrate, whereas a trend of linear and quadratic decrease of CH 4 production was observed when expressed as grams per kilogram of fat-corrected milk and digested neutral detergent fiber. In conclusion, feeding ADY to earlylactating cows improved lactation performance by increasing nutrient digestibility. The optimal ADY dose should be 20 g/d per head.
The aim of this study was to determine the effects of prepartum supplementation of zinc-methionine (Zn-Met) on feed digestibility, rumen fermentation patterns, and immunity status in dams and passive immunity transfer in their calves. A randomized complete design was used in this study. Forty multiparous Holstein dairy cows in late pregnancy (60 d before the expected calving date) were blocked by parity (2.1 ± 0.3), body weight (651 ± 52 kg), and expected calving date, and randomly assigned to 1 of 4 treatments. Cows were supplemented with Zn as Zn-Met at 0, 20, 40, or 60 mg/kg of dry matter (DM) from 60 d before expected calving date to the calving day. Though the nutrient digestibility was not affected by Zn supplementation, DM intake, Zn digestibility, and Zn deposition increased linearly with increasing Zn-Met supplementation. Ruminal pH and molar proportion of individual volatile fatty acids were similar, whereas a linear decrease and increase were observed in ruminal ammonia and microbial crude protein concentration, respectively, with increasing Zn-Met supplementation. Maternal serum concentration of alkaline phosphatase, carboxypeptidase, Cu and Zn superoxide dismutase, and total antioxidant capacity were greater in cows supplemented with >40 mg of Zn/kg of DM compared with the control group. With increasing Zn-Met supplementation, maternal blood concentration of IL-1 decreased linearly, whereas IL-2 and IL-6 increased linearly, and no differences were observed in IL-4. Concentration of nonesterified fatty acids and β-hydroxybutyric acids in maternal blood was similar between treatments. No difference was observed in colostrum composition with increasing Zn-Met supplementation. Concentration of Zn and immunoglobulins (including IgA, IgG, and IgM) in maternal blood did not differ among treatments. However, Zn concentration in colostrum and blood of calves increased linearly. The concentration of IgA and IgM in colostrum increased linearly with increasing Zn-Met supplementation, whereas no differences in immunoglobulins were observed in calf blood. In conclusion, Zn supplementation as Zn-Met at 40 of mg/kg of DM may improve antioxidant activity of dam and potentially increase passive immunity transfer in calves.
Background and Aim: To explore the possible mechanism of Dachaihu Decoction (DCHD) in the treatment of AP, and use in vivo experiments to verify. background: none Methods: The targets and active ingredients of DCHD in the treatment of AP were obtained through network pharmacology, and the preliminary verification was carried out by molecular docking. Caerulein was used to develop the AP rat model. H&E staining was performed to observe variations in pancreatic tissue. Western blot and RT-qPCR were conducted to evaluate the associated proteins and mRNA. objective: none Results: The network pharmacology and molecular docking results showed that the key targets (EGFR, TNF, SRC, VEGFA and CTNNB1) and key active components (beta-sitosterol, stigmasterol, baicalein, quercetin, and kaempferol) of DCHD in the treatment of AP had good binding. H&E staining revealed that rat pancreatic tissues considerably damaged post caerulein intervention, and it has also been suggested that DCHD ameliorates damage to pancreatic tissue. Simultaneously, EGFR, TNF, SRC, VEGFA protein, and mRNA expression levels were increased in the model group compared to the blank group (P < 0.01), whereas CTNNB1 expression was found to be decreased in the model group (P < 0.01). Compared with the model group, the protein expression levels of EGFR, TNF, SRC, and VEGFA in the treatment group were down-regulated (P < 0.01), and CTNNB1 was up-regulated (P < 0.05). Conclusion: DCHD protects pancreatic tissues and improves symptoms in AP rats by upregulating CTNNB1 protein and mRNA while inhibiting EGFR, TNF, SRC, and VEGFA protein and mRNA expression. conclusion: DCHD protects pancreatic tissues and improves symptoms in AP rats by upregulating CTNNB1 protein and mRNA while inhibiting EGFR, TNF, SRC, and VEGFA protein and mRNA expression. other: none
Background: The objective of this study was to investigate the effects of dietary neutral detergent fiber (NDF) to starch ratios on growth performance, nutrient digestibility, ruminal fermentation, and microbial community patterns. Thirty-six healthy Holstein bulls at nine months of age (averaged 282±37 kg of body weight) were randomly allocated into three treatments: dietary NDF to starch ratio of 1.13, 1.38, and 1.63. Dry matter (DM) intake (DMI), body weight gain, serum biochemical characteristics, hormones, total-tract digestibility, ruminal enzyme activities, ruminal fermentation, and microbial communities were analyzed.Results: Though the DMI and feed efficiency were not affected, the average daily gain (ADG) increased linearly with a decreasing NDF to starch ratio. DM digestibility, ruminal microbial diversity, ruminal amylase activity, propionate and butyrate concentration, serum glucose, acetyl-CoA carboxylase increased linearly with decreasing dietary NDF:starch ratio. The abundance of the predominant ruminal genus, Prevotella 1 (19.00%~31.64%) linearly decreased, while the proportion of two dominant genera (Ruminococcaceae NK4A214 group/4.14%~6.66% and Rikenellaceae RC9 group/5.57%~7.76%) increased with the decreasing NDF:starch ratio. Dry matter intake, digestibility of crude protein, ether extract (EE), NDF and ADF, AST, BUN, TP, NEFA, GH, IGF-1, and insulin were not affected by the dietary NDF:starch ratio.Conclusions: In conclusion, the dietary NDF:starch ratio of 1.13 benefits the weight gain of Holstein bulls. A potential reason might be the regulation of propionate productivity, amylase activity, and physiological metabolism through the change of dominant ruminal microbiota (Prevotella 1, Ruminococcaceae NK4A214 group and Rikenellaceae RC9 group), which might have a beneficial effect on the lipogenesis and body weight gain of Holstein bulls during the fattening period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.