In the setting of widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community transmission, reducing the exposure risk on dental professionals and the next patients is the key to reopening dental services in this pandemic environment. The study is motivated by the lack of understanding of the flow-field characteristics and droplet distribution during aerosol-generating procedures. The particle image velocimetry measurements with high temporal and spatial resolutions were performed under ultrasonic scaling in the mockup experimental dental clinic. Compared with other methods focusing on the settled droplet particles, the study focused on the visualization of suspended droplets. From the results of the velocity vector and trajectory map, the high-level contaminated area will be within 1 m from the oral cavity. The vortex structures were identified by the vorticity index. In the surface near the patient's head, a counterclockwise vortex would carry some droplets and contaminate this region. The small droplets circulated in the turbulence cloud and the droplet nuclei generated by dehydration are the two primary sources of suspended particles, which may cause airborne transmission in the dental clinic. About 65%–74% of the droplets in ultrasonic scaling were in the range of 50–180
. The research will provide references to the development of the precaution measures to reduce the SARS-CoV-2 exposure risk of dental professionals.
In time, dental health care has slowly expanded beyond emergency treatment to treat oral diseases. How to reduce the cross-transmission risk in dental surgery has raised much more attention. Considering the lack of consistency of fallow time (FT) in its necessity and duration, the highly sensitive laser light scattering method has been proposed to visualize the airborne lifetime and decay rate of suspended particles in the dental surgery environment. The FT is defined as when the number of suspended particles drops to the level that the next patient can safely enter after the aerosol-generating procedures (AGPs). The ultrasonic scaling was performed in the mock-up experimental dental clinic with 6 air changes per hour (ACH), and the instantaneous moments of the droplets were recorded by a high-speed camera. Without any mitigation measures, the estimated FT in the single dental surgery environment with 6 ACH was in the range of 27–35 min, significantly affecting the number of daily dental services. Despite the cooperation of high-volume evacuation (HVE [IO]) cannot eliminate the FT to zero minutes, the equipment could reduce the required FT by 3–11 min for the suspended particles reducing the baseline levels. Owing to the longer airborne lifetime of suspended particles, the relevant protection equipment, especially respiratory protection, is quite essential in dental surgery. The obtained results of this study will provide evidence to establish the revised FT in dental surgery guidelines and protect the health and wellbeing of urban dwellers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.