Purpose Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), a secreted protein associated with inflammation, is believed to possess momentous and multiple anti-inflammatory and tissue-protective properties. However, the role and potential mechanism of TSG-6 in cervical disk degeneration (CDD) are still not clear. Hence, we aimed to explore the effect of TSG-6 on CDD. Methods Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) or enzyme-linked immunosorbent assay was applied to detect the expression level of TSG-6 and IL-1β in normal and degenerated nucleus pulposus (NP) tissues. Then, qRT-PCR and western blot were adopted to test the TSG-6 protein expression after IL-1β treatment (10 ng/mL) in human NP cells (HNPCs). After over-expressing TSG-6, qRT-PCR was also utilized to evaluate the expression of TNF-α, IL-8, and IL-6 and the synthesis of sulfated glycosaminoglycans (sGAGs), western blot to check the expression of extracellular matrix (ECM) proteins [collagen II, aggrecan, and matrix metalloproteinase-3 (MMP-3)], pain-related molecules (CGRP, calcitonin gene-related peptide; NGF, nerve growth factor; SP, substance P), and PI3K/Akt signaling pathway-related proteins. Results Briefly speaking, TSG-6 and IL-1β expression levels were significantly increased in CDD patient tissues; and IL-1β treatment could significantly increase TSG-6 expression in HNPCs. Further research revealed that, in addition to greatly promoting sGAGs synthesis, TSG-6 over-expression also inhibited TNF-α, IL-8, and IL-6 expression and ECM degradation in IL-1β-induced HNPCs. (The collagen II and aggrecan expression was up-regulated and MMP-3 expression was down-regulated.) Furthermore, over-expression of TSG-6 could decrease the levels of CGRP, NGF, and SP protein expression and activate the PI3K/Akt signaling pathway in IL-1β-treated HNPCs. Conclusion TSG-6 inhibits inflammatory responses, ECM degradation, and expression of pain-related molecules in IL-1β-induced HNPCs by activating the PI3K/Akt signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.