BackgroundMultidrug and toxic compound extrusion (MATE) transporter proteins are present in all organisms. Although the functions of some MATE gene family members have been studied in plants, few studies have investigated the gene expansion patterns, functional divergence, or the effects of positive selection.ResultsForty-five MATE genes from rice and 56 from Arabidopsis were identified and grouped into four subfamilies. MATE family genes have similar exon-intron structures in rice and Arabidopsis; MATE gene structures are conserved in each subfamily but differ among subfamilies. In both species, the MATE gene family has expanded mainly through tandem and segmental duplications. A transcriptome atlas showed considerable differences in expression among the genes, in terms of transcript abundance and expression patterns under normal growth conditions, indicating wide functional divergence in this family. In both rice and Arabidopsis, the MATE genes showed consistent functional divergence trends, with highly significant Type-I divergence in each subfamily, while Type-II divergence mainly occurred in subfamily III. The Type-II coefficients between rice subfamilies I/III, II/III, and IV/III were all significantly greater than zero, while only the Type-II coefficient between Arabidopsis IV/III subfamilies was significantly greater than zero.A site-specific model analysis indicated that MATE genes have relatively conserved evolutionary trends. A branch-site model suggested that the extent of positive selection on each subfamily of rice and Arabidopsis was different: subfamily II of Arabidopsis showed higher positive selection than other subfamilies, whereas in rice, positive selection was highest in subfamily III. In addition, the analyses identified 18 rice sites and 7 Arabidopsis sites that were responsible for positive selection and for Type-I and Type-II functional divergence; there were no common sites between rice and Arabidopsis. Five coevolving amino acid sites were identified in rice and three in Arabidopsis; these sites might have important roles in maintaining local structural stability and protein functional domains.ConclusionsWe demonstrate that the MATE gene family expanded through tandem and segmental duplication in both rice and Arabidopsis. Overall, the results of our analyses contribute to improved understanding of the molecular evolution and functions of the MATE gene family in plants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-016-0895-0) contains supplementary material, which is available to authorized users.
Cadmium (Cd) is highly toxic to plants. Modulation of Cd-responsive transcription is an important way for Cd detoxification in plants. Metal-responsive element (MRE) is originally described in animal metallothionein genes. Although functional MREs also exist in Cd-regulated plant genes, specific transcription factors that bind MRE to regulate Cd tolerance have not been identified. Previously, we showed that Cd-inducible bean (Phaseolus vulgaris) stress-related gene2 (PvSR2) produces a short (S) PvSR2 transcript (S-PvSR2) driven by an intronic promoter. Here, we demonstrate that S-PvSR2 encodes a bean MRE-binding transcription factor1 (PvMTF-1) that confers Cd tolerance in tobacco (Nicotiana tabacum). PvMTF-1 expression was up-regulated by Cd at the levels of RNA and protein. Importantly, expression of PvMTF-1 in tobacco enhanced Cd tolerance, indicating its role in regulating Cd resistance in planta. This was achieved through direct regulation of a feedback-insensitive Anthranilate Synthase a-2 chain gene (ASA2), which catalyzes the first step for tryptophan biosynthesis. In vitro and in vivo DNA-protein interaction studies further revealed that PvMTF-1 directly binds to the MRE in the ASA2 promoter, and this binding depends on the zinc finger-like motif of PvMTF-1. Through modulating ASA2 up-regulation by Cd, PvMTF-1 increased free tryptophan level and subsequently reduced Cd accumulation, thereby enhancing Cd tolerance of transgenic tobacco plants. Consistent with this observation, tobacco transiently overexpressing ASA2 also exhibited increased tolerance to Cd. We conclude that PvMTF-1 is a zinc finger-like transcription factor that links MRE to Cd resistance in transgenic tobacco through activation of tryptophan biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.