The complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested by many proteins variants statistically associated with human disease, nearly all such variants have unknown mechanisms, for example, protein-protein interactions (PPIs). In this study, we address this challenge using a recent machine learning advance-deep neural networks (DNNs). We aim at improving the performance of PPIs prediction and propose a method called DeepPPI (Deep neural networks for Protein-Protein Interactions prediction), which employs deep neural networks to learn effectively the representations of proteins from common protein descriptors. The experimental results indicate that DeepPPI achieves superior performance on the test data set with an Accuracy of 92.50%, Precision of 94.38%, Recall of 90.56%, Specificity of 94.49%, Matthews Correlation Coefficient of 85.08% and Area Under the Curve of 97.43%, respectively. Extensive experiments show that DeepPPI can learn useful features of proteins pairs by a layer-wise abstraction, and thus achieves better prediction performance than existing methods. The source code of our approach can be available via http://ailab.ahu.edu.cn:8087/DeepPPI/index.html .
Protein–protein interactions are closely relevant to protein function and drug discovery. Hence, accurately identifying protein–protein interactions will help us to understand the underlying molecular mechanisms and significantly facilitate the drug discovery. However, the majority of existing computational methods for protein–protein interactions prediction are focused on the feature extraction and combination of features and there have been limited gains from the state-of-the-art models. In this work, a new residue representation method named Res2vec is designed for protein sequence representation. Residue representations obtained by Res2vec describe more precisely residue-residue interactions from raw sequence and supply more effective inputs for the downstream deep learning model. Combining effective feature embedding with powerful deep learning techniques, our method provides a general computational pipeline to infer protein–protein interactions, even when protein structure knowledge is entirely unknown. The proposed method DeepFE-PPI is evaluated on the S. Cerevisiae and human datasets. The experimental results show that DeepFE-PPI achieves 94.78% (accuracy), 92.99% (recall), 96.45% (precision), 89.62% (Matthew’s correlation coefficient, MCC) and 98.71% (accuracy), 98.54% (recall), 98.77% (precision), 97.43% (MCC), respectively. In addition, we also evaluate the performance of DeepFE-PPI on five independent species datasets and all the results are superior to the existing methods. The comparisons show that DeepFE-PPI is capable of predicting protein–protein interactions by a novel residue representation method and a deep learning classification framework in an acceptable level of accuracy. The codes along with instructions to reproduce this work are available from https://github.com/xal2019/DeepFE-PPI.
Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment success. This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy, the latter usually being derived from a separate bright-blood acquisition. Performing both segmentations automatically from a single 3D LGE CMR acquisition would eliminate the need for an additional acquisition and avoid subsequent registration issues. In this paper, we propose a joint segmentation method based on multiview two-task (MVTT) recursive attention model working directly on 3DLGE CMR images to segment the LA (and proximal pulmonary veins) and to delineate the scar on the same dataset. Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently (~0.27 seconds to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60-68 2D slices). Compared to conventional unsupervised learning and other state-of-the-art deep learning based methods, the proposed MVTT model achieved excellent results, leading to an automatic generation of a patient-specific anatomical model combined with scar segmentation for patients in AF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.