Polymyxins are considered to be the last-line antibiotics that are used to treat infections caused by multidrug-resistant (MDR) gram-negative bacteria; however, the plasmid-mediated transferable colistin resistance gene (mcr-1) has rendered polymyxins ineffective. Therefore, the protein encoded by mcr-1, MCR-1, could be a target for structure-based design of inhibitors to tackle polymyxins resistance. Here, we identified racemic compound 3 as a potential MCR-1 inhibitor by virtual screening, and 26 compound 3 derivatives were synthesized and evaluated in vitro. In the cell-based assay, compound 6g, 6h, 6i, 6n, 6p, 6q, and 6r displayed more potent activity than compound 3. Notably, 25 μΜ of compound 6p or 6q combined with 2 μg·mL-1 colistin could completely inhibit the growth of BL21(DE3) expressing mcr-1, which exhibited the most potent activity. In the enzymatic assay, we elucidate that 6p and 6q could target the MCR-1 to inhibit the activity of the protein. Additionally, a molecular docking study showed that 6p and 6q could interact with Glu246 and Thr285 via hydrogen bonds and occupy well the cavity of the MCR-1 protein. These results may provide a potential avenue to overcome colistin resistance, and provide some valuable information for further investigation on MCR-1 inhibitors.
A novel lignan, identified as 4- (3,4-dihydroxyphenyl)-6,7-dimethoxy-3a,4-dihydronaphtho[2,3-c]furan-1(3H)-one, named oleralignan A (1), together with six known compounds, loliolide (2), isololiolide (3), dehydrololiolide (4), daphnetin (5), esculetin (6), and trans-coumaric acid methyl ester (7) was obtained from Portulaca oleracea L., while compounds 3, 4, and 6-7 were isolated from the plant for the first time. Their structures were elucidated using spectroscopic methods, including one-and two-dimensional NMR and high-resolution electrospray ionization time-of-flight mass spectrometry. In addition, the results of activity assay demonstrated that compounds 1-7 have anticholinesterase activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.