A simple, low-cost blade-coating method is developed for the large-area fabrication of single-crystalline aligned CH3NH3PbI3 microwire (MW) arrays. The solution-coating method is applicable to flexible substrates, enabling the fabrication of MW-array-based photodetectors with excellent long-term stability, flexibility, and bending durability. Integrated devices from such photodetectors demonstrate high performance for high-resolution, flexible image sensors.
Compared with polycrystalline films, single-crystalline methylammonium lead halide (MAPbX, X = halogen) perovskite nanowires (NWs) with well-defined structure possess superior optoelectronic properties for optoelectronic applications. However, most of the prepared perovskite NWs exhibit properties below expectations due to poor crystalline quality and rough surfaces. It also remains a challenge to achieve aligned growth of single-crystalline perovskite NWs for integrated device applications. Here, we report a facile fluid-guided antisolvent vapor-assisted crystallization (FGAVC) method for large-scale fabrication of high-quality single-crystalline MAPb(IBr) (x = 0, 0.1, 0.2, 0.3, 0.4) NW arrays. The resultant perovskite NWs showed smooth surfaces due to slow crystallization process and moisture-isolated growth environment. Significantly, photodetectors made from the NW arrays exhibited outstanding performance in respect of ultrahigh responsivity of 12 500 A W, broad linear dynamic rang (LDR) of 150 dB, and robust stability. The responsivity represents the best value ever reported for perovskite-based photodetectors. Moreover, the spectral response of the MAPb(IBr) NW arrays could be sequentially tuned by varying the content of x = 0-0.4. On the basis of this feature, the NW arrays were monolithically integrated to form a unique system for directly measuring light wavelength. Our work would open a new avenue for the fabrication of high-performance, integrated optoelectronic devices from the perovskite NW arrays.
A MoSe2/Si heterojunction photodetector is constructed by depositing MoSe2 film with vertically standing layered structure on Si substrate. Graphene transparent electrode is utilized to further enhance the separation and transport of photogenerated carriers. The device shows excellent performance in terms of wide response spectrum of UV–visible–NIR, high detectivity of 7.13 × 1010 Jones, and ultrafast response speed of ≈270 ns, unveiling the great potential for the heterojunction for high‐performance optoelectronic devices.
Recreating the visual-perception properties using organic electronic devices is highly desired for visual prosthetics and artificial intelligence. Although the integration of organic light-sensing components with synaptic devices can realize the recognition and memory functions for perceived images, complicated problems in device integration for practical applications are generally encountered. Here we demonstrate a new type of organic photosynaptic device based on organic molecular crystals, which can provide optical-sensing and synaptic functions together in one device by means of a unique photon-induced charge transfer effect. This device successfully emulates the working principles of human visual perception in terms of short-term plasticity, long-term potentiation, and spike-timing-dependent plasticity. Moreover, a proof-of-concept artificial image-perception system is demonstrated by integrating the photosynapses on a flexible substrate. The new devices using organic semiconductors may open up innovative application areas, such as artificially intelligent electronic and perception systems, and facilitate the integration of such devices into nextgeneration flexible and stretchable electronics.
High-performance
phototransistors made from organic semiconductor
single crystals (OSSCs) have attracted much attention due to the high
responsivity and solution-processing capability of OSSCs. However,
OSSC-based phototransistors capable of dual-band spectral response
remain a difficult challenge to achieve because organic semiconductors
usually possess only narrow single-band absorption. Here, we report
the fabrication of high-performance, dual-band phototransistors from
a hybrid structure of a 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) single-crystal array coated with CH3NH3PbI3 nanoparticles (NPs) synthesized
by a simple, one-step solution method. In contrast to C8-BTBT and
CH3NH3PbI3 NPs with respective absorption
in the ultraviolet (UV) and visible (vis) region, their hybrid structure
shows broad absorption covering the entire UV–vis range. The
hybrid-based phototransistors exhibit an ultrahigh responsivity of
>1.72 × 104 A/W in the 252–780 nm region,
which
represents the best performance for solution-processing, broadband
photodetectors. Moreover, integrated phototransistor circuitries from
the hybrid CH3NH3PbI3 NPs/C8-BTBT
single-crystal array show applications for high-security communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.