By a facile solid‐state reaction method with urea as a nitrogen source, HNb3O8 could be successfully doped with nitrogen without destroying its layered structure. It was found that the intercalation of urea not only helps to stabilize the layered structure of HNb3O8 during the heating process, but also facilitates an easier doping of nitrogen into the solid acid. The nitrogen‐doped HNb3O8 photocatalyst so‐obtained shows fairly good activity under visible light irradiation.
The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process.
A simple and effective water extraction method is presented for the purification 5-hydroxylmethylfurfural (HMF) obtained from a biomass dehydration system. Up to 99% of the HMF can be recovered and the HMF in aqueous solution is directly converted to 2,5-furandicarboxylic acid (FDCA) as the sole product. This purification technique allows an integrated process to produce FDCA from fructose via HMF prepared in an isopropanol monophasic system, with an overall FDCA yield of 83% obtained. From Jerusalem raw artichoke biomass to FDCA via HMF prepared in a water/MIBK (methyl isobutyl ketone) biphasic system, an overall FDCA yield of 55% is obtained.
Maleic acid is produced from biomass-derived furfural or 5-hydroxymethylfurfural under metal catalyst-free conditions employing H2O2 as an oxidant in formic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.