PurposeThe purpose of this paper is to provide a shorter time cost, high-accuracy fault diagnosis method for water pumps. Water pumps are widely used in industrial equipment and their fault diagnosis is gaining increasing attention. Considering the time-consuming empirical mode decomposition (EMD) method and the more efficient classification provided by the convolutional neural network (CNN) method, a novel classification method based on incomplete empirical mode decomposition (IEMD) and dual-input dual-channel convolutional neural network (DDCNN) composite data is proposed and applied to the fault diagnosis of water pumps.Design/methodology/approachThis paper proposes a data preprocessing method using IEMD combined with mel-frequency cepstrum coefficient (MFCC) and a neural network model of DDCNN. First, the sound signal is decomposed by IEMD to get numerous intrinsic mode functions (IMFs) and a residual (RES). Several IMFs and one RES are then extracted by MFCC features. Ultimately, the obtained features are split into two channels (IMFs one channel; RES one channel) and input into DDCNN.FindingsThe Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection (MIMII dataset) is used to verify the practicability of the method. Experimental results show that decomposition into an IMF is optimal when taking into account the real-time and accuracy of the diagnosis. Compared with EMD, 51.52% of data preprocessing time, 67.25% of network training time and 63.7% of test time are saved and also improve accuracy.Research limitations/implicationsThis method can achieve higher accuracy in fault diagnosis with a shorter time cost. Therefore, the fault diagnosis of equipment based on the sound signal in the factory has certain feasibility and research importance.Originality/valueThis method provides a feasible method for mechanical fault diagnosis based on sound signals in industrial applications.
As a new type of computing paradigm closer to service terminals, mobile edge computing (MEC), can meet the requirements of computing-intensive and delay-sensitive applications. In addition, it can also reduce the burden on mobile terminals by offloading computing. Due to cost issues, results in the deployment density of mobile edge servers (MES) is restricted in real scenario, whereas the suitable MES should be chosen for better performance. Therefore, this article proposes a task offloading strategy under the sparse MES density deployment scenario. Commonly, mobile terminals may reach MES through varied access points (AP) based on multi-hop transmitting mode. The transmission delay and processing delay caused by the selection of AP and MES will affect the performance of MEC. For the purpose of reducing the transmission delay due to system load balancing and superfluous multi-hop, we formulated the multi-objective optimization problem. The optimization goals are the workload balancing of edge servers and the completion delay of all task offloading. We express the formulated system as an undirected and unweighted graph, and we propose a hybrid genetic particle swarm algorithm based on two-dimensional genes (GA-PSO). Simulation results show that the hybrid GA-PSO algorithm does not outperform state-of-the-art GA and NSA algorithms in obtaining all task offloading delays. However, the workload by standard deviation approach is about 90% lower than that of the GA and NSA algorithms, which effectively optimizes the performance of load balancing and verifies the effectiveness of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.