For an electric power grid that has large penetration levels of variable renewable energy including wind generation and photovoltaics, the system frequency stability is jeopardized, which is manifest in lowering frequency nadir and settling frequency. This paper suggests an enhanced primary frequency response strategy of a doubly-fed induction generator (DFIG) in association with pitch angle control. The DFIG works in de-loaded operation with a certain reserve power via pitch angle control prior to disturbances for frequency regulation. To address this, a function of the pitch angle is employed that decreases the pitch angle with time to slowly feed the active power to the power gird. The simulation results demonstrate the effectiveness and feasibility of the proposed primary frequency response strategy including the settling frequency and frequency nadir.
Power systems would face issues in system frequency stability when high scales of variable renewable energy generation are integrated in them. Battery energy storage systems (BESSs) with advanced control capability and rapid control response have become a countermeasure to solve the issues in system frequency stability. This research addresses a flexible synthetic inertial control strategy of the BESS to enhance the dynamic system frequency indices including the frequency nadir, settling frequency, and rate of change of the system frequency. To this end, the control loops based on the frequency excursion and rate of change of the system frequency are implemented into the d-axis controller of the BESS. The adaptive control coefficient of both control loops could be adjusted according to the instantaneous state of charge (SOC) so that it can inject more power to the grid at a higher SOC. The benefits of the proposed combined inertial control strategy are investigated with various sizes of disturbance and SOCs of the BESSs. Results successfully illustrate that the proposed combined inertial control strategy of the BESS is capable of enhancing the system frequency stability so as to promote variable renewable energy accommodation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.