Neuroendocrine neoplasms (NENs) represent relatively rare tumors. The lack of diagnostic, therapeutic method and prognostic factors makes them a challenge to us. We retrospectively reviewed the data of 205 NENs patients among which 157 cases were followed-up. Proprotein convertase subtilisin/kexin 9 (PCSK9), a regulator of low density lipoprotein cholesterol (LDL-C), was confirmed as a target gene of microRNA-224. We found an increased incidence of NENs from 2012 to 2015. Women were usually diagnosed at earlier stages than men (P < 0.05). Tumor grading was associated with primary tumor site, especially esophagus and cardia NENs all at G3 (P <0.001). Age, tumor grading and LDL-C levels were independent risk factors of digestive NENs. Low LDL-C level was significantly correlated with survival rate and median overall survival (OS, P < 0.05). MicroRNA-224 agomir and PCSK9 siRNA could promote apoptosis and suppress proliferation, invasion of BON-1 cells (P < 0.05), but increase the level of glucocorticoid (GC, P < 0.05). Taken together, age, tumor grading and LDL-C level are independent risk factors of NENs. The miR-224/PCSK9/GC axis binds to tumorigenesis and prognosis of pancreatic NENs (p-NENs).
It has been shown that long noncoding RNAs (lncRNAs) are involved in the carcinogenesis of multiple cancers. However, the roles of lncRNAs in gastroenteropancreatic neuroendocrine neoplasms (GEP‐NENs) remain elusive. In the present study, we found that lncNEN885 was markedly decreased in human gastric NEN samples compared to adjacent normal tissues by transcriptome sequencing. Functionally, silencing or overexpression of lncNEN885 could not obviously affect cell proliferation or apoptosis in BON‐1 or LCC‐18 cells but could affect cell migration and invasion as well as wound‐healing rates. Furthermore, dysregulation of lncNEN885 affected these biological functions by activating epithelial‐mesenchymal transition through increased expression of Snail, vimentin, and N‐cadherin as well as decreased E‐cadherin levels in BON‐1 and LCC‐18 cells. Silencing of lncNEN885 could dramatically increase the phosphorylation of glycogen synthase kinase‐3β and decrease the expression of adenomatous polyposis coli and Axin, with the subsequent accumulation of β‐catenin. Taken together, dysregulation of lncNEN885 can regulate cell migration and invasion by activating epithelial‐mesenchymal transition process partially through canonical Wnt/β‐catenin signaling in GEP‐NEN cells, which may be a novel biomarker for the metastasis of GEP‐NENs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.