Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0–20 cm) have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm) which is rarely impacted by tillage are still unclear. 16S rRNA gene amplicon sequencing was used to investigate bacterial and archaeal communities in a Pup-Calric-Entisol soil treated for 32 years with chemical fertilizer (CF) and CF combined with farmyard manure (CFM), and to reveal links between soil properties and specific bacterial and archaeal taxa in both the top- and subsoil. The results showed that both CF and CFM treatments increased soil organic carbon (SOC), soil moisture (MO) and total nitrogen (TN) while decreased the nitrate_N content through the profile. Fertilizer applications also increased Olsen phosphorus (OP) content in most soil layers. Microbial communities in the topsoil were significantly different from those in subsoil. Compared to the CF treatment, taxa such as Nitrososphaera, Nitrospira, and several members of Acidobacteria in topsoil and Subdivision 3 genera incertae sedis, Leptolinea, and Bellilinea in subsoil were substantially more abundant in CFM. A co-occurrence based network analysis demonstrated that SOC and OP were the most important soil parameters that positively correlated with specific bacterial and archaeal taxa in topsoil and subsoil, respectively. Hydrogenophaga was identified as the keystone genus in the topsoil, while genera Phenylobacterium and Steroidobacter were identified as the keystone taxa in subsoil. The taxa identified above are involved in the decomposition of complex organic compounds and soil carbon, nitrogen, and phosphorus transformations. This study revealed that the spatial variability of soil properties due to long-term fertilization strongly shapes the bacterial and archaeal community composition and their interactions at both high and low taxonomic levels across the whole soil profile.
Plant growth-promoting rhizobacteria promote plant growth by direct and indirect mechanisms. We isolated twelve bacterial strains showing different degrees of phosphate solubilizing activity from maize rhizosphere. Four isolates solubilized over 300 μg mL⁻¹ phosphate from insoluble Ca₃(PO₄)₂, with isolate SCAUK0330 solubilizing over 450 μg mL⁻¹. Based on the 16S rRNA gene sequence analysis SCAUK0330 was identified as Burkholderia cepacia. SCAUK0330 grew at 10-40 °C and pH 4.0-10.0, tolerated up to 5% NaCl, and showed antagonism against nine pathogenic fungi. SCAUK0330 promoted the growth of both healthy and Helminthosporium maydis infected maize plants, indicating that the isolate was a good candidate to be applied as a biofertilizer and a biocontrol agent under a wide range of environmental conditions.The expression of a single SCAUK0330 gene gave E. coli a pH decrease linked ability to solubilize phosphate. The nucleotide and the deduced amino acid sequences of this phosphate solubilization linked gene showed high degree of sequence identity with B. cepacia E37gabY. The production of gluconic acid is considered as the principle mechanism for phosphate solubilization. In agreement with the proposed periplasmic location of the gluconic acid production, the predicted signal peptide and transmembrane regions implied that GabY is membrane bound.
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.
Lentinula edodes (shiitake mushroom) is a common edible mushroom with a number of potential therapeutic and nutritional applications. It contains various medically important molecules, such as polysaccharides, terpenoids, sterols, and lipids, were contained in this mushroom. Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to analyze the mechanisms underlying the biosynthetic pathways of these substances. qRT-PCR is used for accurate analyses of transcript levels owing to its rapidity, sensitivity, and reliability. However, its accuracy and reliability for the quantification of transcripts rely on the expression stability of the reference genes used for data normalization. To ensure the reliability of gene expression analyses using qRT-PCR in L. edodes molecular biology research, it is necessary to systematically evaluate reference genes. In the current study, ten potential reference genes were selected from L. edodes genomic data and their expression levels were measured by qRT-PCR using various samples. The expression stability of each candidate gene was analyzed by three commonly used software packages: geNorm, NormFinder, and BestKeeper. Base on the results, Rpl4 was the most stable reference gene across all experimental conditions, and Atu was the most stable gene among strains. 18S was found to be the best reference gene for different development stages, and Rpl4 was the most stably expressed gene under various nutrient conditions. The present work will contribute to qRT-PCR studies in L. edodes.
Sixteen strains of symbiotic bacteria from root nodules of Glycine max grown in Ottawa, Canada, were previously characterized and placed in a novel group within the genus Bradyrhizobium. To verify their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences that were 99.79 % similar to the closest relative, Bradyrhizobium liaoningense LMG 18230T. Phylogenetic analysis of concatenated atpD, glnII, recA, gyrB, rpoB and dnaK genes divided the 16 strains into three multilocus sequence types that were placed in a highly supported lineage distinct from named species of the genus Bradyrhizobium consistent with results of DNA–DNA hybridization. Based on analysis of symbiosis gene sequences (nodC and nifH), all novel strains were placed in a phylogenetic group with five species of the genus Bradyrhizobium that nodulate soybeans. The combination of phenotypic characteristics from several tests including carbon and nitrogen source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain OO99T elicits effective nodules on Glycine max, Glycine soja and Macroptilium atropurpureum, partially effective nodules on Desmodium canadense and Vigna unguiculata, and ineffective nodules on Amphicarpaea bracteata and Phaseolus vulgaris. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium ottawaense sp. nov. is proposed, with OO99T ( = LMG 26739T = HAMBI 3284T) as the type strain. The DNA G+C content is 62.6 mol%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.