In this work, we propose and investigate a novel technique for the generation of millimeter-wave (mm-wave), i.e. frequency sixuplexing technique. The proposed technique is comprised of two cascaded Mach- Zehnder modulators (MZMs). The first MZM, biased at maximum transmission, is only used for even-order optical harmonic generation, and then a second MZM, biased at minimum transmission, is used for both optical carrier suppression modulation and data signal modulation. As an example, we consider an RF at 10 GHz, which carries the data signal and drives the MZMs; and an mm-wave signal at 60 GHz, i.e. a frequency sixupler, is obtained. It is found that our proposed sixupler leads to an 8-dB higher RF power at 60 GHz and a 6-dB improvement in receiver sensitivity with comparison to the conventional technique, i.e. optical carrier suppression modulation. The generated mm-wave signal is robust to fiber chromatic dispersion. The proposed technique is verified by experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.