In this paper, an all-optical parallel reservoir computing (RC) system with two channels for the optical packet header recognition is proposed and simulated, which is based on a semiconductor ring laser (SRL) with the characteristic of bidirectional light paths. The parallel optical loops are built through the cross-feedback of the bidirectional light paths where every optical loop can independently recognize each injected optical packet header. Two input signals are mapped and recognized simultaneously by training all-optical parallel reservoir, which is attributed to the nonlinear states in the laser. The recognition of optical packet headers for two channels from 4 bits to 32 bits is implemented through the simulation optimizing system parameters and therefore, the optimal recognition error ratio is 0. Since this structure can combine with the wavelength division multiplexing (WDM) optical packet switching network, the wavelength of each channel of optical packet headers for recognition can be different, and a better recognition result can be obtained.
In this paper, a multiple-input multiple-output reservoir computing (RC) system is proposed, which is composed of multiple nonlinear nodes (Mach–Zehnder modulators) and multiple mutual-coupling loops of optoelectronic delay lines. Each input signal is added into every mutual-coupling loop to implement the simultaneous recognition of multiple route signals, which results in the signal processing speed improving and the number of routes increasing. As an example, the four-route input and four-route output RC is simultaneously realized by numerical simulations. The results show that this type of RC system can successfully recognize the four-route optical packet headers with 3-bit, 8-bit, 16-bit, and 32-bit, and four-route independent digital speeches. When the white noise is added to the signals such that the signal-to-noise ratio (SNR) of the optical packet headers and the digital speeches are 35 dB and 20 dB respectively, the normalized root mean square errors (NRMSEs) of the signal recognition are all close to 0.1. The word error rates (WERs) of the optical packet header recognition are 0%. The WER of the digital speech recognition is 1.6%. The eight-route input and eight-route output RC is also numerically simulated. The recognition of the eight-route 3-bit optical packet headers is implemented. The parallel processing of multiple-route signals and the high recognition accuracy are implemented by this proposed system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.