Dye-sensitized solar cells (DSSCs) composed of nanostructured carbon composite materials-stacked counter electrodes (CEs) were fabricated in the present study. As the potential replacement of expensive platinum (Pt) thin film, various carbon composite materials, including zero-dimensional carbon nanoparticles (CNPs), one-dimensional multiwalled carbon nanotubes (MWCNTs), and two-dimensional graphene flakes (GFs) as a suitable charge transfer medium were deposited on the surface of CEs using a screen printing process. As the results, CNPs were found to result in deteriorating the charge transfer from CE to liquid electrolyte due to the formation of highly aggregated structures with very low specific surface area. However, MWCNTs and MWCNTs-added carbon composites (e.g., CNP/MWCNT, MWCNT/GF, CNP/MWCNT/GF) were found to enhance the charge transfer from CE to liquid electrolyte due to the formation of highly networked structures with high specific surface area. The resulting PCE of DSSCs composed of pure MWCNTs- and MWCNTs-added carbon composites-based CEs were very similar with that of DSSCs composed of Pt-based CEs. This suggests that the nanostructured carbon materials especially composed of MWCNTs and their composites are one of the promising candidates to replace the expensive Pt in the CEs of DSSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.