All-inorganic perovskite quantum dots (PeQDs) have sparked extensive research focus on white-light-emitting diodes (WLEDs), but stability and photoluminescence efficiency issues are still remain obstacles impeding their practical application. Here, we reported a facile one-step method to synthesize CsPbBr 3 PeQDs at room temperature using branched didodecyldimethylammonium fluoride (DDAF) and short-chain-length octanoic acid as capping ligands. The obtained CsPbBr 3 PeQDs have a nearunity photoluminescence quantum yield of 97% due to the effective passivation of DDAF. More importantly, they exhibit much improved stability against air, heat, and polar solvents, maintaining >70% of initial PL intensity. Making use of these excellent optoelectronic properties, WLEDs based on CsPbBr 3 PeQDs, CsPbBr 1.2 I 1.8 PeQDs, and blue LEDs were fabricated, which show a color gamut of 122.7% of the National Television System Committee standard, a luminous efficacy of 17.1 lm/W, with a color temperature of 5890 K, and CIE coordinates of (0.32, 0.35). These results indicate that the CsPbBr 3 PeQDs have great practical potential in wide-color-gamut displays.
Perovskite quantum dots (PeQDs) endowed with capping ligands exhibit impressive optoelectronic properties and enable for cost-efficient solution processing and exciting application opportunities. We synthesize and characterize three different PeQDs with the same cubic CsPbBr3 core, but which are distinguished by the ligand composition and density. PeQD-1 features a binary didodecyldimethylammonium bromide (DDAB) and octanoic acid capping ligand system, with a high surface density of 1.53 nm−2, whereas PeQD-2 and PeQD-3 are coated by solely DDAB at a gradually lower surface density. We show that PeQD-1 endowed with highest ligand density features the highest dispersibility in toluene of 150 g/L, the highest photoluminescence quantum yield of 95% in dilute solution and 59% in a neat film, and the largest core-to-core spacing in neat thin films. We further establish that ions are released from the core of PeQD-1 when it is exposed to an electric field, although it comprises a dense coating of one capping ligand per four surface core atoms. We finally exploit these combined findings to the development of a light-emitting electrochemical cell (LEC), where the active layer is composed solely of solution-processed pure PeQDs, without additional electrolytes. In this device, the ion release is utilized as an advantage for the electrochemical doping process and efficient emissive operation of the LEC.
To test the effectiveness of the detection and positioning technology of the pipe leakage, the propagation law of pipeline leakage signal is studied in this paper, and a pipeline leakage signal simulation and generation system is proposed. It can simulate the leakage pressure wave signals at different positions of the pipeline. Changing pipe’s parameters though the computer, the simulation and output of the leakage signal under various working conditions can be realized. It can test the reliability and accuracy of the detection and location technology of the pipe leakage, and verify the applicability of the pipe leakage detection and location technology to different pipe structures. The results show that the output signal of system can replace the real signal, and located the pre-set leakage point by cross-correlation method. The purpose of studying the effectiveness and accuracy of the existing leak location algorithm base on largescale complex pipe network system in laboratory conditions was realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.