Low energy impact can induce invisible damage of carbon fiber reinforced polymer (CFRP). The damage can seriously affect the safety of the CFRP structure. Therefore, damage detection is crucial to the CFRP structure. Impact location information is the premise of damage detection. Hence, impact localization is the primary issue. In this paper, an impact localization system, based on the fiber Bragg grating (FBG) sensor network, is proposed for impact detection and localization. For the completed impact signal, the FBG sensor and narrow-band laser demodulation technology are applied. Wavelet packet decomposition is introduced to extract available frequency band signals and attenuate noise. According to the energy of the available frequency band signal, an impact localization model, based on the extreme learning machine (ELM), is established with the faster training speed and less parameters. The above system is verified on the 500 mm × 500 mm × 2 mm CFRP plate. The maximum localization error and the minimum localization error are 30.4 mm and 6.7 mm, respectively. The average localization error is 14.7 mm, and training time is 0.7 s. Compared with the other machine learning methods, the localization system, proposed in this paper, has higher accuracy and faster training speed. This paper provides a practical system for impact localization of the CFRP structure.
Abstract:In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm500 mm2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.