A series of all-inorganic, abundant-metal-based, high-nuclearity cobalt-phosphate (Co-Pi) molecular catalysts [{Co4(OH)3(PO4)}4(SiW9O34)4](32-) (1), [{Co4(OH)3(PO4)}4(GeW9O34)4](32-) (2), [{Co4(OH)3(PO4)}4(PW9O34)4](28-) (3), and [{Co4(OH)3(PO4)}4(AsW9O34)4](28-) (4) were synthesized and shown to be highly effective at photocatalytic water oxidation. The {Co16(PO4)4} cluster contains a Co4O4 cubane which is structurally analogous to the [Mn3CaO4] core of the oxygen-evolving complex (OEC) in photosystem II (PSII). Compounds 1-4 were shown to be the first POM-based Co-Pi-cluster molecular catalysts for visible light-driven water oxidation, thus serving as a functional model of the OEC in PSII. The systematic synthesis of four isostructural analogues allowed for investigating the influence of different heteroatoms in the POM ligands on the photocatalytic activities of these Co-Pi cluster WOCs. Further, the POM-based photocatalysts readily recrystallized from the photocatalytic reaction systems with the polyoxoanion structures unchanged, which together with the laser flash photolysis, dynamic light-scattering, (31)P NMR, UV-vis absorption, POM extraction, and ICP-MS analysis results collectively confirmed that compounds 1-4 maintain their structural integrity under the photocatalytic conditions. This study provides not only a valuable molecular model of the "Co-Pi" catalysts with a well-defined structure but also an unprecedented opportunity to fine-tune high-nuclearity POM clusters for visible light-driven water splitting.
Three new polyoxometalate(POM)-based polynuclear nickel clusters, Na24[Ni12(OH)9(CO3)3(PO4)(SiW9O34)3]·56H2O (1), Na25[Ni13(H2O)3(OH)9(PO4)4(SiW9O34)3]·50H2O (2), and Na50[Ni25(H2O)2OH)18(CO3)2(PO4)6(SiW9O34)6]·85H2O (3) were synthesized and structurally characterized. Compounds 1-3 contain {Ni12}, {Ni13} and {Ni25} core, respectively, connected by the inorganic {OH}, {PO4} and/or {CO3} linkers and encapsulated by the lacunary A-α-{SiW9O34} POM units. Compound 3 represents the currently largest POM-based Ni clusters. All three compounds contain {Ni3O3} quasi-cubane or {Ni4O4} cubane units, which are similar to the natural oxygen-evolving center {Mn4O5Ca} in photosystem II (PSII). Visible light-driven water oxidation experiments with compounds 1-3 as the homogeneous catalysts indicate that all three compounds show good photocatalytic activities. The O2 evolution amount corresponds to a high TON of 128.2 for 1, 147.6 for 2, and 204.5 for 3, respectively. Multiple experiments including dynamic light-scattering, UV-vis absorption, catalysts aged experiments, tetra-n-heptylammonium nitrate (THpANO3) toluene extraction, and capillary electrophoretic measurements results confirm that compounds 1-3 are dominant active catalysts but not Ni(2+) ions(aq) or nickel oxide under the photocatalytic conditions. The above research results indicate a new and all-inorganic polynuclear Ni-based structural model as the visible light-driven water oxidation catalysts.
Two-dimensional (2D) molybdenum sulfide (MoS 2 ) is an attractive noble-metal-free electrocatalyst for hydrogen evolution (HER) in acids. Tremendous effort has been made to engineer MoS 2 catalysts with either more active sites or higher conductivity to enhance their HER activity. However, little attention has been paid to synergistically structural and electronic modulations of MoS 2 . Herein, 2D hydrogenated graphene (HG) is introduced into MoS 2 ultrathin nanosheets for the construction of a highly efficient and stable catalyst for HER. Owing to synergistic modulations of both structural and electronic benefits to MoS 2 nanosheets via HG support, such a catalyst has improved conductivity, more accessible catalytic active sites, and moderate hydrogen adsorption energy. On the optimized MoS 2 /HG hybrid catalyst, HER occurs with an overpotential of 124 mV at 10 mA cm −2 , a Tafel slope of 41 mV dec −1 , and a stable durability for 24 h continuous operation at 30 mA cm −2 without observable fading. The high performance of the optimized MoS 2 /HG hybrid catalyst for HER was interpreted with density functional theory calculations. The simulation results reveal that the introduction of HG modulates the electronic structure of MoS 2 to increase the number of active sites and simultaneously optimizes the hydrogen adsorption energy at S-edge atoms, eventually promoting HER activity. This study thus provides a strategy to design and develop high-performance HER electrocatalysts by employing different 2D materials.
The oxygen evolution reaction is a crucial step in water electrolysis to develop clean and renewable energy. Although noble metalbased catalysts have demonstrated high activity for the oxygen evolution reaction, their application is limited by their high cost and low availability.Here we report the use of a molecule-to-cluster strategy for preparing ultrasmall trimetallic clusters by using the polyoxometalate molecule as a precursor. Ultrafine (0.8 nm) transition-metal clusters with controllable chemical composition are obtained. The transition-metal clusters enable highly efficient oxygen evolution through water electrolysis in alkaline media, manifested by an overpotential of 192 mV at 10 mA cm −2 , a low Tafel slope of 36 mV dec −1 , and long-term stability for 30 h of electrolysis. We note, however, that besides the excellent performance as an oxygen evolution catalyst, our molecule-to-cluster strategy provides a means to achieve well-defined transition-metal clusters in the subnanometer regime, which potentially can have an impact on several other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.