Currently, the authentication of camellia oil (CAO) has become very important due to the possible adulteration of CAO with cheaper vegetable oils such as rapeseed oil (RSO). Therefore, we report a Fourier transform infrared (FTIR) spectroscopic method for detecting the authenticity of CAO and quantifying the blended levels of RSO. In this study, two characteristic spectral bands (1119 cm−1 and 1096 cm−1) were selected and used for monitoring the purity of CAO. In combination with principal component analysis (PCA), linear discriminant analysis (LDA), and partial least squares regression (PLSR) analysis, qualitative and quantitative methods for the detection of camellia oil adulteration were proposed. The results showed that the calculated I1119/I1096 intensity ratio facilitated an initial check for pure CAO and six other edible oils. PCA was used on the optimized spectral region of 1800–650 cm−1. We observed the classification of CAO and RSO as well as discrimination of CAO with RSO adulterants. LDA was utilized to classify CAO from RSO. We could differentiate and classify RSO adulterants up to 1% v/v. In the quantitative PLSR models, the plots of actual values versus predicted values exhibited high linearity. Root mean square error of calibration (RMSEC) and root mean square error of cross validation (RMSECV) values of the PLSR models were 1.4518–3.3164% v/v and 1.7196–3.8136% v/v, respectively. This method was successfully applied in the classification and quantification of CAO adulteration with RSO.
Refining degree has an important influence on the quality of camellia (Camellia oleifera) oil. The deterioration behaviors and lipid oxidation of three kinds of camellia oils, including camellia crude oil (CO), moderate refined oil (MRO), and refined oil (RO), during heating were investigated in this study. The results of deterioration behavior analysis showed that the oxidation degree was RO > CO > MRO. Tocopherol and polyphenolic substances in the oil might help delay oil oxidation. The lipid oxidation results indicated that the heating process had greater effects on CO and MRO than RO; it upregulated neutral lipid content and downregulated phospholipid content in terms of lipid changes and the multiplicity of differences. Glycerophospholipid metabolism was the most remarkable pathway and was important to study the heating process of refined oil. Moderate refining is good for retaining the beneficial lipids in camellia oil. The results of this study would provide a theoretical basis for camellia oil processing.
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) technology provides an efficient tool for editing the genomes of plants, animals and microorganisms. Glutamate:glyoxylate aminotransferase 1 (GGAT1) is a key enzyme in the photorespiration pathway; however, its regulation mechanism is largely unknown. Given that EMS-mutagenized ggat1 (Col-0 background) M2 pools have been generated, ggat1 (Ler background) should be very useful in the positional cloning of suppressor and/or enhancer genes of GGAT1. Unfortunately, such ggat1 (Ler) mutants are not currently available. In this study, CRISPR/Cas9 was used to generate ggat1 (Ler) mutants. Two GGAT1 target single-guide RNAs (sgRNAs) were constructed into pYLCRISPR/Cas9P-N, and flowering Arabidopsis (Ler) plants were transformed using an Agrobacterium tumefaciens-mediated floral dip protocol. Eleven chimeric and two heterozygous GGAT1-edited T1 lines of target 1 were separately screened from positive transgenic lines. Two ggat1 homozygous mutants, CTC-deletion and T-deletion at target 1, were generated from T2 generations of the 13 T1 lines. The edited mutation sites were found to be stable through generations regardless of whether the T-DNA was present. In addition, the genetic segregation of the mutation sites obeyed the Mendelian single gene segregation rule, and no mutations were detected at the possible off-target site. Also, the two independent ggat1 mutants had similar photorespiration phenotypes and down-regulated GGAT enzyme activity. Together, these results indicate that genetically stable ggat1 (Ler) mutants were generated by CRISPR/Cas9 genome editing, and these mutants will be used to promote the positional cloning of suppressor and/or enhancer genes of GGAT1 in our subsequent study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.