At present, regression modeling methods fail to achieve higher simulation accuracy, which limits the application of simulation technology in more fields such as virtual calibration and hardware-in-the-loop real-time simulation in automotive industry. After fully considering the abruptness and complexity of engine predictions, a Gaussian process regression modeling method based on a combined kernel function is proposed and verified in this study for engine torque, emission, and temperature predictions. The comparison results with linear regression, decision tree, support vector machine (abbreviated as SVM), neural network, and other Gaussian regression methods show that the Gaussian regression method based on the combined kernel function proposed in this study can achieve higher prediction accuracy. Fitting results show that the R 2 value of engine torque and exhaust gas temperature after the engine turbo (abbreviated as T4) prediction model reaches 1.00, and the R 2 value of the nitrogen oxide (abbreviated as NOx) prediction model reaches 0.9999. The model generalization ability verification test results show that for a totally new world harmonized transient cycle data, the R 2 value of engine torque prediction is 0.9993, the R 2 value of exhaust gas temperature is 0.995, and the R 2 value of NOx emission prediction result is 0.9962. The results of model generalization ability verification show that the model can achieve high prediction accuracy for performance prediction, temperature prediction, and emission prediction under steady-state and transient operating conditions.
Low accuracy is the main challenge that plagues the application of engine modeling technology at present. In this paper, correlation analysis technology is used to analyze the main influencing factors of engine torque and NOx (nitrogen oxides) raw emission performance from a statistical point of view, and on this basis, the regression algorithm is used to construct the engine torque and NOx emission prediction model. The prediction RMSE between engine torque prediction value and true value reaches 4.6186, and the torque prediction R2 reaches 1.00. Prediction RMSE between NOx emission prediction value and true value reaches 67.599, and NOx emission prediction R2 reaches 0.99. When using the new WHTC data for model prediction verification, the RMSE between the engine torque predicted value and true value reaches 4.9208, and the prediction accuracy reaches 99.60%, the RMSE between NOx emission prediction value and true value reaches 72.38, and the prediction accuracy reaches 99.2%, indicating that the model is relatively accurate. The evaluation result of the ambient temperature impact on torque shows that ambient temperature is positively correlated with engine torque.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.