Electrochemical reduction of CO2 to valuable fuels is appealing for CO2 fixation and energy storage. However, the development of electrocatalysts with high activity and selectivity in a wide potential window is challenging. Herein, atomically thin bismuthene (Bi‐ene) is pioneeringly obtained by an in situ electrochemical transformation from ultrathin bismuth‐based metal–organic layers. The few‐layer Bi‐ene, which possesses a great mass of exposed active sites with high intrinsic activity, has a high selectivity (ca. 100 %), large partial current density, and quite good stability in a potential window exceeding 0.35 V toward formate production. It even deliver current densities that exceed 300.0 mA cm−2 without compromising selectivity in a flow‐cell reactor. Using in situ ATR‐IR spectra and DFT analysis, a reaction mechanism involving HCO3− for formate generation was unveiled, which brings new fundamental understanding of CO2 reduction.
Electrochemical reduction of CO2 to valuable fuels is appealing for CO2 fixation and energy storage. However, the development of electrocatalysts with high activity and selectivity in a wide potential window is challenging. Herein, atomically thin bismuthene (Bi‐ene) is pioneeringly obtained by an in situ electrochemical transformation from ultrathin bismuth‐based metal–organic layers. The few‐layer Bi‐ene, which possesses a great mass of exposed active sites with high intrinsic activity, has a high selectivity (ca. 100 %), large partial current density, and quite good stability in a potential window exceeding 0.35 V toward formate production. It even deliver current densities that exceed 300.0 mA cm−2 without compromising selectivity in a flow‐cell reactor. Using in situ ATR‐IR spectra and DFT analysis, a reaction mechanism involving HCO3− for formate generation was unveiled, which brings new fundamental understanding of CO2 reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.